The basic markers of neutrophilic inflammation in severe bronchial asthma (the literature review)



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In spite of the marked insights of modern medicine into the pathogenesis of bronchial asthma, there is unresolved issue regarding achievement of therapeutic control. Understanding of the immunopathogenesis of the disease resulted in a subdivision into different biological phenotypes due to dominating inflammatory component, characterized by list of biological markers. A role of neutrophilic inflammation in bronchial asthma has been widely discussed in recent studies but is still uncertain. In general, asthma associated with neutrophils tends to be a more aggressive disease with more tissue destruction and airway remodeling; tightly associated with lower response to corticosteroids treatment, moreover, it could be induced by it.

Full Text

Restricted Access

About the authors

L A Goryachkina

Russian Medical Academy of Post-graduate education

Clinical Allergology Department

D V Biteeva

Russian Medical Academy of Post-graduate education

Clinical Allergology Department

D S Fomina

Russian Medical Academy of Post-graduate education

Email: dinadok@mail.ru
Clinical Allergology Department

References

  1. Chung K.F., Bel E.H., Wenzel S.E. Difficult-to-Treat Severe Asthma. European Respiratory Monograph. 2011.
  2. Chung K., Godard P., Adelroth E., Barnes N., Barnes P. et al. Difficult therapy resistant asthma: the need for an integrated approach to define clinical phenotypes, evaluate risk factors, understand pathophysiology and find novel therapies. ERS Task Forse on Difficult/therapy-resistant asthma. Eur. Respir. J. 1999, v. 13, p. 1198-208.
  3. Wensel Sally E. Review Asthma: defining ofthe persistent adult phenotypes. Lancet. 2006, v. 368, p. 804-813.
  4. Holgate S.T., Holloway J., Wilson S., Howarth P.H. et al. Understanding the pathophysiology of severe asthma to generate new therapeutic opportunities. J. Clin. Immunol. 2006, v. 117, Issue 3, p. 496-506.
  5. Gaga M., Zervas E., Chanez P. Update on severe asthma: what we know and what we need. Eur. Respir. Rev. 2009, 18:112, p. 58-65.
  6. Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED). http://www.ubiopred.eu/.
  7. Innovative Medicines Initiative (MIM). http://www.imi. europa.eul/.
  8. Wenzel Sally E Phenotypes in Asthma Useful Guides for Therapy, Distinct Biological processes, or both? Am. J. Respir. Crit. Care Med. 2004, v. 170, p. 579-580.
  9. Macedo P., Hew M., Norrego A. et al. Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma. Clin. Exp. Allergy. 2009, v. 39, p. 1668-1676.
  10. Vrlik M., Dzurilla M., Bucova M., Kantarova D., Buc M. Asthma bronchial phenotypes and their treatment — a current view. Acta med. Mart. 2009, v. 9 (3), p. 3-1137.
  11. Fahy J.V. Eosinophilic and neutrophilic inflammation in asthma. Insights from clinical studies. Proc. Am. Thorac. Soc. 2009, v. 6, p. 256-259.
  12. Дугарова И.Д., Анаев Э.Х., Чучалин А.Г О роли цитоки-нов при бронхиальной астме. Пульмонология. 2009, № 4, с. 34-38.
  13. Cowan D.C., Cowan J., Palmay R., Williamson A., Taylor D.R. The effects of steroid therapy on inflammatory cell subtypes in asthma. 2010. Downloaded from thorax.bmj.com on February 4, 2010 — Published by group.bmj.com.
  14. Stewart J. Levine, M.D., Sally E. Wenzel, M.D. The role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes: Are we getting closer? Ann. Intern. Med. 2010, v. 152 (4), p. 232-237.
  15. Hastie A.T., Moore W.C., Meyers D.A. et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J. Allergy Clin. Immunol. 2010, p. 1028-1036.
  16. The ENFUMOSA Study Group. The ENFUMOSA crossec-tional European multicentre study of the clinical phenotype of chronic severe asthma. Eur. Respir. J. 2003, v. 22, p. 407-477.
  17. Cowan D.C., Cowan J.O., Palmay R. et al. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax. 2010, v. 65, p. 384-390.
  18. Barnes P.J. et al. Neutrophilic Inflammation in Severe Persistent Asthma. Am. J. Respir. Crit. Care Med. 1999, v. 160, p.1532-1539.
  19. Wilson R.H., Whilehead G.S., Nakano H. et al. Allergic sensitization through the airways primes Thl7-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Cm. Crit. Care. 2009, v. 180, p. 720-730.
  20. Shannon J., Ernst P., Yamauchi Y. et al. Differences in airway cytocine profile in severe asthma compared to moderate asthma. Chest. 2008, v. 133, p. 420-426.
  21. Kikuchi S., Nagata M., Kikuchi I. et al. Association between neutrophil and eosinophilic inflammation in patients with severe persistent asthma. Int. Arch Allergy Immunol. 2005, v. 137, Suppl. 1, p. 7-11.
  22. Jatakanon A., Uasuf C., Maziak W et al. Neutrophillic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care Med. 1999, v. 160, p. 1532-1539.
  23. Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. Новосибирск, «Наука». 1989, 344 с.
  24. Barnes P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 2008, v. 118 (11), p. 3546-3556.
  25. Kim C.C., Nassiri J., Brody J.S. Mechanisms of airway goblet cell mucin release: studies with cultured tracheal surface epithelial cells. Am. J. Respir. Cell Mol. Biol. 1989, v. 1, p. 137-143.
  26. Amitani R., Wilson R., Rutman A. et al. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 1991, v. 4, p. 26-32.
  27. Liu H., Lazarus S.C., Caughey G.H., Fahy J.V Neutrophill elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vivo. Am. J. Physiol. 1999, v. 276, p. L28-L34.
  28. Claudia L. Ordonez, Thomas E. Shaughnessy, Michael A. Matthay, Jon V. Fahy. Increased Neutrophil Numbers and IL-8 Levels in Airway Secretion in Acute Severe Asthma. Am. J. Respir. Crit. Care Med. April 2000, v. 161, Number 4, p. 1185-1190.
  29. Fahy J.V., Kim K.W., Liu J., Boushey H.A. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol. 1995, v. 95, p. 843-852.
  30. Keatings V.M., Evans D.J., O’Connor B.J., Barnes P.J. Cellular profiles in asthmatic airways: a comparison of induced sputum, bronchial washings, and broncho-alveolar lavage fluid. Thorax. 1997, v. 52, p. 372-374.
  31. Claudia L. Ordonez, Thomas E. Shaughnessy, Michael A. Matthay, Jon V. Fahy. Increased Neutrophil Numbers and IL-8 Levels in Airway Secretion in Acute Severe Asthma Am. J. Respir. Crit. Care Med. April 2000, v. 161, Number 4, p. 1185-1190.
  32. Zimmer M., Medcalf R.L., Fink T.M. et al. Three human elas-tase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc. Natl. Acad. Sci. USA. 1992, v. 89, p. 8215-8219.
  33. Sadallah S., Hess C., Miot S. et al. Elastase and metallo-proteinase activities regulate soluble complement receptor 1 release. Eur. J. Immunol. 1999, v. 29, p. 3754-3761.
  34. Le-Barillec K., Si-Taha M., Balloy V., Chignard M. Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. J. Clin. Invest. 1999, v. 103, p. 1039-1046.
  35. Champagne B., Tremblay P., Cantin A., St. Pierre Y Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol. 1998, v. 161, p. 6398-6405.
  36. Banda M.J., Rice A.G., Griffin G.L., Senior R.M. Alpha1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J. Biol. Chem. 1988, v. 263, p. 4481-4484.
  37. Rubio F., Cooley J., Accurso F.J., Remold-ODonnell E. Linkage of neutrophil serine proteases and decreased surfactant protein-A (SP-A) levels in inflammatory lung disease. Thorax. 2004, v. 59, p. 318-323.
  38. Chung Y, Kercsman C.M., Davis P.B. Ferret tracheal epithelial cells grow in vivo are resistant to lethal injury by activated neutrophils. Am. J. Respir. Cell. Mol. Biol. 1991, v. 5, p. 125-132.
  39. Smedly L.A., Tonnesen M.G., Sandhaus R.A. et al. Neutrophil-mediated injury to endothelial cells enhancement by endotoxin and essential role of neutrophil elastase. J. Clin. Invest. 1986, v. 77, p. 1233-1243.
  40. Harlan J.M., Killen P.D., Harker L.A. et al. Neutrophil-mediated endothelial injury in vitro. J. Clin. Invest. 1981, v. 68, p. 1394-1403.
  41. Аверьянов А.В., Поливанова А.Э. Нейтрофильная эла-стаза и болезни органов дыхания. Пульмонология. 2006, № 5, c. 74-81.
  42. Eden E., Hammel J., Rouhani F.N. et al. Asthma features in severe alpha-antitrypsin deficiency: experience of the National Heart, Lung, and Blood Institute. Reg. Chest. 2003, v. 123 (3), p. 765-771.
  43. Vignola A.M., Bonanno A., Mirabella A. et al. Increased levels of elastase and alpha 1-antitrypsin in sputum of asthmatic patients. Am. J. Respir. Crit. Care Med. 1998, v. 157 (2), p. 505-1145.
  44. Hubbard R.C., Fells A., Gadek J. et al. Neutrophil accumulation in the lung in 1 -antitrypsin deficiency: spontaneous release of Leukotriene B4 by alveolar macrophages. J. Clin. Invest. 1991, v. 88, p. 891-897.
  45. Mauad T, Silva L.F., Santos M.A. et al. Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma Am. J. Respir. Crit. Care Med. 2004, v. 170 (8), p.857-862.
  46. Bedard M., McClure C.D., Schiller N.L. et al. Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am. J. Respir. Cell. Mol. Biol. 1993, v. 9, p. 455-462.
  47. Фомина Д.С., Горячкина Л.А., Ненашева Н.М., Нешкова Е.А. Активность нейтрофильной эластазы сыворотки крови у больных атопической бронхиальной астмой. Пульмонология. 2010, № 2, с. 82-86.
  48. Laurell C.B., Eriksson S., The electrophoretic alpha 1-globulin pattern of serum in alpha 1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 1963, v. 15, p. 132-140.
  49. Аверьянов А.В., Поливанова А.Э. Дефицит а1-анти-трипсина и хроническая обструктивная болезнь легких. Пульмонология. 2007, № 3, с. 103-109.
  50. Davis I.D., Burke B., Freese D. et al. The pathologic spectrum of the nephropathy associated with α1-antitrypsin deficiency Hum. Pathol. 1992, v. 23, p. 57-62.
  51. King M.A., Stone J.A., Diar P.T. et al. a1-antitrypsin deficiency: evaluation ofbronchiectasis with CT Radiology. 1996, v. 199, p. 137-141.
  52. Janciauskiene S.M., Nita I.M., Stevens T α1-antitrypsin exerts in vitro anti-inflammatory activity in human monocytes by elevating cAMP. J. Biol. Chem. 2007, v. 282. p. 8573-8582.
  53. Matsunaga K., Yanagasima S., Ueshima K. et al. Airway cytokine expression measured by means protein array in exhaled breath condensate: Correlation with properties in asthmatic patients. Rinsho Byori. 2007, v. 55 (4), p. 375-80.
  54. Baggiolini M., Walz M.A., Kunkel S.L. Neutrophilactivat-ing peptide-1/interleukin-8, a novel cytokine that activates neutrophils. J. Clin. Invest. 1999, v. 84, p. 1045-1049.
  55. Gimbrone M.A., Obin M.S., Brock A.F. et all. Endothelial interleukin-8: A novel inhibitor of leukocyte-endothelial interactions. Science. 1999, v. 246, p. 1601-1603.
  56. Vasanthi Govindaraju, Marie-Claire Michoud, Pasquale Ferraro et al. The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis. Respir Res. 2008, v. 9 (1), p. 76.
  57. Matsunaga K., Yanagasima S., Ueshima K. et al. Airway cytokine expression measured by means protein array in exhaled breath condensate: Correlation with properties in asthmatic patients. Rinsho Byori. 2007, v. 55 (4), p. 375-80.
  58. Дугарова И.Д., Анаев Э.Х., Чучалин А.Г. О роли цитоки-нов при бронхиальной астме. Пульмонология. 2009, № 4, с. 10-14.
  59. Davies R.J., Devalia J.L. Asthma: epithelial cells. Br. Med. Bull. 1992, v. 48, p. 85-96.
  60. Lambin. C.L., Gosset P., Tillie-Leblond I., Saulnier F., Marquette C.H., Wallaert B., Tonnel A.B. Bronchial neutrophillia in patients with noninfectious status astmaticus. Am. J. Respir. Crit. Care Med. 1998, v. 157, p. 394-402.
  61. Cosmi L., Liotta F., Maggi E., Romagnani S., Annunniato. TH17 cells: new players in asthma pathogenesis. Allergy. 2011, p. 989-998.
  62. Ouyang W., Koli J.K., Zheng Y The biological functions of T-helper 17 cell effector cytokines in inflammation. Immunity 2008, v. 28, p. 454-467.
  63. SchnyderCandrian S., Togbe D., Couillin I. et al. Interleukin 17 is a negative regulator of established allergic asthma. The Journal of Experimental Medicine.
  64. Decock J., Paridaens R., Cufer T Proteases and metastasis: clinical relevance nowadays? Curr. Opin. Oncol. 2005, v. 17, p. 45-53.
  65. Louis R., Lau L.C., Born A.O., Roldaan A.C. et al. The relationship between airways inflammation and asthma severity. Am. J. Respir. Crit. Care Med. 2000, v. 161, p. 9-16.
  66. Lamblin C., Gosset P., Tillie-Leblond I. et al. Bronchial neutrophilia in patients with non-infectious status asthmaticus. Am. J. Respir. Crit. Care Med. 1998, v. 157, p. 394-402.
  67. Laan M., Cui Z.H., Hoshino H. et al. Neutrophil recruitment by human Il-17 via C-X-C chemokine release in the airways. J. Immunol.1999, v. 162, p. 2347-2352.
  68. Doe C., Bafadhel M., Siddiqui S. et al. Expression of the T-helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest. 2010, v. 138, p. 1140-1147.
  69. Mulet S., Hamid Q., Davnine F. et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol. 2001, v. 108, p. 430-438.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2012



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies