Modern view on immunopathogenesis of asthma

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The modern approaches to the understanding of inflammation in the lower airways in asthma are discussed in the article. we present some recent studies that demonstrate the variety of mechanisms of the inflammatory response and the heterogeneity of patients with bronchial asthma. the immunological particularities of asthma endotypes and phenotypes are shown in this article.

Full Text

Restricted Access

About the authors

O M Kurbacheva

Institute of immunology

A V Zhestkov

Samara State Medical University


D A Nagatkin


V V Kulagina

Samara Regional Clinical Hospital

O V Nagatkina

Samara Regional Clinical Hospital


  1. Lötvall J., Akdis C.A., Bacharier L.B. et. al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011, v. 127, p. 355-360.
  2. Чучалин А.Г., Айсанов З.Р., Белевский А.С. и соавт. Федеральные клинические рекомендации по диагностике и лечению бронхиальной астмы. 2013, 31 с.
  3. Chung K.F., Wenzel S.E., Brozeket J.L. al. International ERS/ ATS guidelines on definition, evaluation and treatment of severe asthma, TASK FORCE REPORT ERS/ATS GUIDELINES ON SEVERE ASTHMA. Eur. Respir. J. 2014, v. 43, p. 343-373.
  4. Levy M., Andrews R., Buckingham R. et al. Why asthma still kills: the National Review of Asthma Deaths (NRAD) Confidential Enquiry report. London. Royal College of Physicians. 2014,116 p.
  5. Agache I., Akdis C., Jutel M., Virchow J.C. Untangling asthma phenotypes and endotypes. Allergy. 2012, v. 67, p. 835-846.
  6. Mosmann T.R., Coffman R.L. TH1- and TH2-cells: different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol. 1989, v. 7, p. 145-173.
  7. Abbas A.K., Murphy K.M., Sher A. Functional diversity of helper T-lymphocytes. Nature. 1996, v. 383, p. 787-793.
  8. Krakowski M., Owens T. Interferon-confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 1996, v. 26, p. 1641-1646.
  9. Willenborg D.O., Fordham S., Bernard C.C. et al. IFN-plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 1996, v. 157, p. 3223-3227.
  10. Langrish L.C., Chen Y., Blumenschein W.M. et al. IL-23 drives a pathogenic T-cell population that induces autoimmune inflammation. J. Exp. Med. 2005, v. 201, p. 233-240.
  11. Mittrucker H.W., Visekruna A., Huber M. Heterogeneity in the Differentiation and Function of CD8 T-cells. Arch. Immunol. Ther. Exp. (Warsz.). 2014, v. 62, p. 449-458.
  12. Huber M., Lohoff M. Change of paradigm: CD8+ T-cells as important helper for CD4+ T-cells during asthma and autoimmune encephalomyelitis. Allergo J. Int. 2015, v. 24, p. 8-15.
  13. Hammad H., Chieppa M., Perros F. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine. 2009, v. 15, p. 410-416.
  14. Kondo Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 2008, v. 20, p. 791-800.
  15. Morita H., Arae K., Unno H. et al. IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS One. 2015, v. 31, p. 10-17.
  16. Iwakura Y., Ishigame H., Saijo S., Nakae S. Functional specialization ofinterleukin-17 family members. Immunity. 2011, v. 34, p. 149-162.
  17. Ohno T., Morita H., Arae K. et al. Interleukin-33 in allergy. Allergy. 2012, v. 67, p. 1203-1214.
  18. Ziegler S.F. Thymic stromal lymphopoietin and allergic disease. J. Allergy Clin. Immunol. 2012, v. 30, p. 845-852.
  19. Larché M., Robinson D.S., Kay A.B. The role of T-lymphocytes in the pathogenesis of asthma. Journal of Allergy and Clinical Immunology. 2003, v. 111, p. 450-463.
  20. Su Z., Lin J., Lu F. et al. Potential autocrine regulation of interleukin-33/ST2 signaling of dendritic cells in allergic inflammation. Mucosal Immunology. 2013, v. 6, p. 921-930.
  21. Kaiko G.E., Horvat J.C., Beagley K.W., Hansbro P.M. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology. 2008, v. 123, p. 326-338.
  22. Lambrecht B.N., Hammad H. The immunology of asthma. Nature Immunology. 2014, v. 16, p. 45-56.
  23. Brusselle G.G., Maes T., Bracke K.R. Eosinophilic airway inflammation in nonallergic asthma. Nature Medicine. 2013, v. 19, p. 977-979.
  24. Walker J.A., Barlow J.L., McKenzie A.N.J. Innate lymphoid cells-how did we miss them? Nature Reviews Immunology. 2013, v. 13, p. 75-87.
  25. Xue L., Salimi M., Panse I. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on Th2-cells. Journal of Allergy and Clinical Immunology. 2014, v. 133, p. 1184-1194.
  26. Mjösberg J.M., Trifari S., Crellin N.K. et al. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunology. 2011, v. 12, p. 1055-1062.
  27. Newcomb D.C., Peebles R.S. Th17-mediated inflammation in asthma. Current Opinion in Immunology. 2013, v. 25, p. 755-760.
  28. Al-Ramli W., Préfontaine D., Chouiali F. et al. TH17-associat-ed cytokines (IL-17A and IL-17F) in severe asthma. Journal of Allergy and Clinical Immunology. 2009, v. 123, p. 1185-1187.
  29. Iezzi G., Sonderegger I., Ampenberger al. CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T-cells. Proceedings of the National Academy of Sciences of the United States of America. 2009, v. 106, p. 876-881.
  30. Vroman H., van den Blink B., Kool M. Mode of dendritic cell activation: the decisive hand in Th2/Th17-cell differentiation. Implications in asthma severity? Immunobiology. 2015, v. 220, p. 254-261.
  31. Huang G., Wang Y., Chi H. Regulation of TH17-cell differentiation by innate immune signals. Cellular & Molecular Immunology. 2012, v. 9, p. 287-295.
  32. Brusselle G.G., Provoost S., Bracke K.R., Kuchmiy A., Lamkanfi M. Inflammasomes in respiratory disease: from bench to bedside. Chest. 2014, v. 145, p. 1121-1133.
  33. Kim H.Y., Lee H.J., Chang Y.J. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine. 2014, v. 20, p. 54-61.
  34. Yu S., Kim H.Y., Chang Y.J. et al. Innate lymphoid cells and asthma. Journal of Allergy and Clinical Immunology. 2014, v. 133, p. 943-950.
  35. Manni M.L., Robinson K.M., Alcorn J.F. A tale oftwo cytokines: IL-17 and IL-22 in asthma and infection. Expert Review of Respiratory Medicine. 2014, v. 8, p. 25-42.
  36. Durrant D.M., Metzger D.W. Emerging roles of T-helper subsets in the pathogenesis of asthma. Immunological Investigations. 2010, v. 39, p. 526-549.
  37. Wang Y.H., Wills-Karp M.S. The potential role of interleukin-17 in severe asthma. Current Allergy and Asthma Reports. 2011, v. 11, p. 388-394.
  38. Saffar A.S., Ashdown H., Gounni A.S. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Current Drug Targets. 2011, v. 12, p. 556-562.

Copyright © Pharmarus Print Media, 2016

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies