Osobennosti sekretornogo immunitetazheludochno-kishechnogo trakta
- Authors: Agafonov V.E.1, Il'intseva NV1, Gervazieva VB1
-
Affiliations:
- Issue: Vol 8, No 1 (2011)
- Pages: 14-24
- Section: Articles
- Submitted: 10.03.2020
- Published: 15.03.2011
- URL: https://rusalljournal.ru/raj/article/view/768
- DOI: https://doi.org/10.36691/RJA768
- ID: 768
Cite item
Abstract
компоненты слизистого барьера, включая иммуноглобулины, муцины и антимикробные пептиды.
Отмечена роль комменсальной микрофлоры. Рассмотрена структура лимфоидной ткани кишечника
(GALT), ее основные клеточные элементы, осуществляющие надзор врожденного иммунитета за
гомеостазом в слизистой оболочке ЖКТ и контролирующие оральную толерантность. Представлены
иммунорегуляторы адоптивного иммунного ответа (Th1, Th2 и Th17), ответственные за срыв толерантности,
развитие пищевой аллергии, аутоиммунитета и хронического воспаления кишечника.
About the authors
Viktor Evgen'evich Agafonov
Email: agafonov-ve@yandex.ru; vbger@mail.ru
N V Il'intseva
V B Gervazieva
References
- Хаитов P.M., Пинегин Б.В. Иммунная система ЖКТ: особенности строения и функционирования в норме и патологии. Иммунология. 1997, № 5, с. 4-7.
- Нестерова И.В., Швыдченко И.Н. Особенности строения и функционирования иммунной системы желудочно- кишечного тракта. Аллергология и иммунология. 2002, т. 3, № 2, с. 282-292.
- Mayer L. Mucosal Immunity. Pediatrics. 2003, III, р. 1595- 1600.
- Macdonald T.T., Elliott M.B., Pender S.L.F. T-cells orchestrate intestinal mucosal shape and integrity. Immunol. Today. 1999, v. 20 (11), p. 505-510.
- Deplancke B., Gaskins H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 2001, v. 73, p. 1131-1141.
- Hershberg R.M., Mayer L.F. Antigen processing and presentation by intestinal epithelial cells: polarity and complexity. Immunol. Today. 2000, v. 21, p. 123-128.
- Bourges D., Chevaleyre C., Wang C. et al. Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T- and sIgA+ B-lymphocyte recruitment. Immunology. 2007, v. 122 (4), p. 551-561.
- Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J. Clin. Immunol. 2001, v. 3, p. 1021-1035.
- Blum S., Alvares S., Haller D. Intestinal microflora and the interaction with immunocompetent cells. Antonie van Leewenhoek. 1999, v. 16, p. 199-205.
- Пикина А.П., Постникова Е.А., Сафронова А.И., Ефимов Б.А. Сравнительный анализ качественного и количественного состава микрофлоры кишечника у клинически здоровых детей раннего возраста, проживающих в домашних условиях и в домах ребенка. Вестник РГМУ. 2003, № 4, c. 46-52.
- Хромова С.С., Ефимов Б.А., Тарабрина Н.П. и соавт. Иммунорегуляция в системе микрофлора - интестинальный тракт. Аллергология и иммунология. 2004, т. 5, № 2, с. 265-271.
- Spahn T.W., Weiner H.L., Rennert P.D. et al. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur. J. Immunol. 2002, v. 32, p. 1109-1113.
- Лебедев К.А., Понякина И.Д. Конфликт организма человека с его микрофлорой. Физиол. человека. 2006, т. 32, № 2, с. 224-235.
- Byesdorfer C.A., Dipaolo R.J. Petzold S.J., Unanue E.R. Following immunization antigen becomes concentrated in a limited number of APCs including B-cells. J. Immunol. 2004, v. 173, p. 6627-6634.
- Hamada H., T. Hiroi T.Y., Nishiyama T. et al. Identification of multiple isolated lymphoid follicles on the anti-mesenteric wall of the mouse small intestine. J. Immunol. 2002, v. 168, p. 57-64
- Jang M.H., Kweon M.N., Iwatani K. et al. Intestinal villous M-cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA. 2004, v. 101, p. 6110-6115.
- Spahn T.W., Fontana A., Faria A.M. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 2001, v. 31, p. 1278-1287.
- Worbs T., Bode U., Yan S., Hoffmann M.W. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 2006, v. 203 (3), p. 519-527.
- Dotan I., Mayer L. Immunopathogenesis of inflammatory bowel disease. Curr. Opin. Gastroenterol. 2002, v. 18, p. 421-431.
- Хаитов P.M. Физиология иммунной системы. М., ВИНИТИ РАН. 2001, 223 c.
- Ярилин А.А. Основы иммунологии. М., «Медицина». 1999, 668 с.
- Menager-Marcq I., Pomie C., Ramagnoli P., van Meerwijk J.P. CD8+CD28 regulatory T lymphocytes prevent experimental inflamatory bowel disease in mice. Gastroenterology. 2006, v. 131 (6), p. 1776-1786.
- Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. 2000, 430 с.
- Graff J.Ch. Comprehensive transcriptional profiling of γδT-cells. A thesis. Montana State University. Bozeman. Montana. 2005, p. 1-95.
- Bagriacik E.U., Okabe M., Klein J.R. Origin of intestinal intraepithelial lymphocytes: direct evidence for a thymus-derived γδT-cell component. Immun. Lett. 2000, v. 75, p. 77-83.
- Bukowski J.F., Vtorita C.T., Brenner M.B. Human γδT-cells recognize alkylamines derived from microbes, edible plants: implications for innate immunity. Immunity. 1999, v. 11, p. 57-65.
- Groh V., Steinle A., Bauer S., Spies T. Recognition of stressinduced MHC molecules by intestinal γδT-cells. Science.1998, v. 279, p. 1737-1740.
- Reschner A., Hubert P., Delvenne P. et al. Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin. Exp. Immunol. 2008, v. 152, p. 2-10.
- Cerovic V., McDonald V., Nassar M.A. et al. New insights into the roles of dendritic cells in intestinal immunity and tolerance. Int. Rev. Cell. Mol. Biol. 2009, v. 272, p. 33-105.
- Shakhar G., Lindquist R.L., Skokos D. et al. Stable T-cell dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 2005, v. 6, p. 707-714.
- Rescigno M., Sabatino A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 2009, v. 119, 9, p. 2441- 2450.
- Sanos S.L., Diefenbach A. Isolation of NK-cells and NK-like cells from the intestinal lamina propria. Methods Mol. Biol. 2010, v. 612, p. 505-517.
- Wells J.M., Loonen L.M., Karczewski J.M. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. Int. J. Med. Microbiol. 2010, v. 300 (1), p. 41-48.
- Chehade M., Mayer L. Oral tolerance and its relation to food hypersensitivities. J. Allergy Clin. Immunol. 2005, v. 115 (1), p. 3-12.
- Weiner H.I. Oral tolerans, an active immunological process mediated by multiple mechanisms. J. Clin. Invest. 2000, v. 106, p. 935-937.
- Mowat A.M., Parker L.A., Beacock-Sharp H. et al. Oral tolerance: overview and historical perspectives. Ann. NY. Acad. Sci. 2004, v. 1029, p. 1-8.
- Allez H., Mayer L. Regulatory T-cells: peace keeper in the gut. Inflam. Bowel Dis. 2004, v. 10 (5), p. 666-676.
- Qiao M., Thornton A.M., Shevach E.M. CD4+ CD25+ regulatory T-cells render naive CD4+ CD25- T-cells anergic and suppressive. Immunology. 2007, v. 120, p. 447-455.
- Makita S., Kanai T., Nemoto Y. et al. Intestinal lamina propria retaining CD4+CD25+ regulatory T-cells is a suppressive site of intestinal inflammation. Immunol. 2007, v. 178 (8), p. 4937-4946.
- Yan X., Liu Z., Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochem. Biophis. Sin (Shangha). 2009, v. 41 (4), p. 263-272.
- Fantini M.C., Rizzo A., Fine D. et al. Smad7 controls resistance of colitogenic T-cells to regulatory T-cell-mediated suppression. Gasstroenterology. 2009, v. 136 (4), p. 1308-1316.
- Shevach E.M., McHugh R.S., Piccirillo C.A., Thornton A.M. Control of N cell activation by CD4+CD25+ suppressor T-cells. Immunol. Rev. 2001, v. 182, p. 58067.
- Roncaloro M.G., Gregori S., Battaglia M. et al. Interleukin- 10-secreting type 1 regulatory T-cells in rodents and humans. Immunol. Rev. 2006, v. 212, p. 28050.
- Weiner H.L. Oral tolerance: immune mechanisms and the generation of Th3-type TGFβ-secreting regulatory cells. Microbes. Infect. 2001, v. 3, p. 947-954.
- Tsuji N.M., Mizumachi K., Kurisaki J. Antigen-specific, CD4+CD25+ regulatory T-cell clones induced in Peyers patches. Int. Immunol. 2003, v. 15 (4), p. 525-534.
- Mi-Na Kweon, Kiyono H. CD40L in autoimmunity and mucisal induced tolerance. J. Clin. Invest. 2002, v. 109, No. 2, p. 171-173.
- So J.S., Lee C.G., Kwon H.K. et al. Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis. Mol. Immunol. 2008, v. 46 (1), p. 172-180.
- Janeway C.A.J., Medzhitov R. Innate immune recognition. Ann. Rev. Immunol. 2002, v. 20, p. 197-216.
- Ivanov I.I., Brent S. Mckenzie. et al. The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ Th-cells. Cell. 2006, v. 126, p. 1121-1133.
- Matsuzaki G., Umemura M. Interleukin-17 as a effector molecule of innate and acquired immunity against infection. Microbiol. Immunol. 2007, v. 51 (12), p. 1139-1147.
- Kleinschek M.A., Boniface K., Sadekova S. et al. Circulating and gut-resident human Th17-cells express CD161 and promote intestinal inflammation. J. Exp. Med. 2009, v. 206, p. 525-534.
- Aujla S.J., Dubin P.J., Kolls J.K. Th17-cells and mucosal host defense. Semin. Immunol. 2007, v. 19 (6), p. 377-382.
- Turvey S.E., Hawn T.R. Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin. Immunol. 2006, v. 120, p. 1-9.
- Dziarski R., Gupta D. Staphylococcus aureus Peptidoglycan Is Toll-Like Receptor 2 Activator: a Reevaluation. Infect. Immun. 2005, v. 73, No. 8, p. 5212-5216.
- Doyle S.E., O'Connell R., Vaidya S.A. et al. Toll-like receptor 3 mediates a more potent antiviral response than toll-like receptor 4. J. Immunol. 2003, v. 170, p. 3565-3571.
- Heng-Fu Bu, Xiao Wang, Yi Tang et al. Toll-like receptor 2-mediated peptidoglycan uptake by immature intestinal epithelial cells from apical side and exosome-associated transcellular transcytosis. J. cell. Physiol. 2010, v. 222, p. 658-668.
- Akira S., Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, v. 4, p. 499-511.
- Jonsson K., Guo B.P., Monstein H.J. et al. Molecular cloning and characterization of two Helicobacter pylori genes coding for plasminogen-binding proteins. Proc. Natl. Acad. Sci. USA. 2004, v. 10 (7), p. 1852-1857.
- О роли антимикробных пептидов в механизмах врожденного иммунитета кишечника человека. Клинические перспективы гастроэнтерологии, гепатологии. 2004, № 3, c. 2-9.
- Diamond G., Beckloff N., Weinberg A., Kisich K.O. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des. 2009, v. 15 (21), p. 2377-2392.
- Wu T., Tanguay R.M. Antibodies against heat shock proteins in environmental stresses and diseases: friend or foe? Cell Stress Chaperones. 2006, v. 11 (1), p. 1-12.
- Ganeshan K., Neilsen C.V., Hadsaitong A. et al. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J. Allergy Clin. Immunol. 2009, v. 123, p. 231-238.
- Meresse B., Ripoche J., Heyman M., Cerf-Bensussan N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal. Immunol. 2009, v. 2, p. 8-23.
- Berin M.C., Mayer L. Immunophysiology of experimental food allergy. Mucosal. Immunology. 2009, v. 2, p. 24-32.
- Scurlock A.M., Burks A.W., Jones S.M. Oral immunotherapy for food allergy. Curr. Allergy Asthma Rep. 2009, v. 9 (3), p. 186-193.
- Vickery B.P., Burks A.W. Immunotherapy in the treatment of food allergy: focus on oral tolerance. Curr. Opin. Allergy Clin. Immunol. 2009, v. 9 (4), p. 364-370.
- Schuppan D., Junker Y., Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009, v. 137 (6), p. 1912-1933.
- Festen E.A., Szperl A.M., Weersma R.K. et al. Inflammatory bowel disease and celiac disease: overlaps in the pathology and genetics, and their potential drug targets. Endocr. Metab. Immune Disord. Drug Targets. 2009, v. 9 (2), p. 199-218.
- Pacciani V., Gregori S., Chini L. et al. Induction of anergic allergen-specific suppressor T-cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. J. Allergy Clin. Immunol. 2010, v. 125 (3), p. 727-736.