Allergic reactivity - evolutionary attainments by highly organized animals



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper has given an insight of allergy as evolutionary selected reactivity for highly organized animals. This reactivity is directed to organization of allergen-specific inflammation and serves as biologically expedient, high-specific and high-sensitive reaction in response to allergen entering into the organism because of barrier tissue dysfunction (higher allergen permeability). such insight has raised a question on consequences of allergy reactivity elimination for highly organized animals and their posterity.

Full Text

Restricted Access

About the authors

I S Gushchin

Institute of Immunology

Email: igushchin@yandex.ru

References

  1. Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. М., «Фармарус Принт». 2010, 228 с.
  2. Burton O.T., Oettgen H.C. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol. Rev. 2011, v. 24, p. 128-143.
  3. Agrawal D.K., Shao Z. Pathogenesis of allergic airway inflammation. Cur. Allergy Asthma Rep. 2010, v. 10, p. 39-48.
  4. Wu L.C. Immunoglobulin E receptor signaling and asthma. J.Biol. Chemistry. 2011, v. 23, p.32891-32897.
  5. Saito H., Ishizaka T., Ishizaka K. Mast cells and IgE: from history to today. Allergology International. 2013, v. 62, p. 3-12.
  6. Гущин И.С. Об элементах биологической целесообразности аллергической реактивности. Пат. физиол. 1979, № 4, с. 3-11.
  7. Сиротинин Н.Н. Эволюция аллергических процессов. Физиол. журнал (Киев). 1972, т. 18, № 6, с. 837-841.
  8. Caraballo L., Zakzuk J. Consideraciones sobre la evolicion de la respuesta inmunitaria Th2 y sus posibles relaciones con parasitosis y alergia. Bionemica. 2012, v. 32, p. 145-157.
  9. Gershwin L.J. The phylogenetic development of anaphylactic activity and homocytotropic antibodies. Dev. Comp. Immunol. 1978, v. 2, p. 595-615.
  10. Ramsdell S.G. A note on anaphylactic behavior in the paramecium. J. Immunol. 1927, v. 14, p. 197-199.
  11. Ramsdell S.G. The smooth muscle reaction in the serum treated earthworm. J. Immunol. 1927, v. 13, p. 385-387.
  12. Krafka J. The production of anaphylaxis in the crawfish. Am. J. Epidemiol. 1929, v. 10, p. 261-264.
  13. Dreyer N.B., King J.M. Anaphylaxis in the fish. J. Immunol. 1948, v. 60, p. 277-282.
  14. Cohen S.G., Sapp T.M., Shaskas J.R. Phylogeny of hypersensitivity. I. Anaphylactic responsiveness of the frog, Rana pipiens. J. Allergy. 1971, v. 47, p. 121-130.
  15. Downs C.M. Anaphylaxis. VII. Active anaphylaxis in turtles. J. Immunol. 1928, v. 15, p. 77-81.
  16. Jayaraman S., Muthukkaruppan V. Manifestation of anaphylaxis to egg albumen in the lizard, Calotes versicolor. Experientia. 1975, v. 31 (12), p. 1468-1469.
  17. Гущин И.С. Немедленная аллергия клетки. М., «Медицина». 1976, 175 с.
  18. Frajnik M.F. Comparative analyses of immunoglobulin genes: surprises and portents. Nat. Rev. Immunol. 2002, v. 2, p. 688-698.
  19. Warr G.W., Magor K.E., Higgins D.A. IgY: clues to the origins ofmodern antibodies. Immunol. Today. 1995, v. 16, p. 392-398.
  20. Lundqvist M.L., Middleton D.L., Radford C. et al. Immunoglobulins of the non-galliform birds: antibody expression and repertoire in the duck. Dev. Comp. Immunol. 2006, v. 30, p. 93-100.
  21. Baghian A., Reyes C.V., Mendoza A. et al. Production of a rabbit anti-cockatiel immunoglobulin G and characterization of its cross-reactivities with immunoglobulin G of other psittacine species. Avian Dis. 1999, v. 43, p. 48-54.
  22. Cadman H.F., Kelly P.J., Dikanifura M. et al. Isolation and characterization of serum immunoglobulin classes of the ostrich (Struthio camelus). Avian Dis. 1994, v. 38, p. 616-620.
  23. Taylor A.I., Sutton B.J., Calvert R.A. Mutations in an avian IgY-Fc fragment reveal the locations of monocyte Fc receptor binding sites. Dev. Comp. Immunol. 2010, v. 34, p. 97-101.
  24. Parvari R., Avivi A., Lentner F. et al. Chicken immunoglobulin γ-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. EMBO J. 1988, v. 7, p. 739-744.
  25. Vernersson M., Aveskogh M., Munday B., Hellman L. Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (Il); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus. Eur. J. Immunol. 2002, v. 32, p. 2145-2155.
  26. Taylor A.I., Gould H.J., Sutton B.J., Calvert R.A. Avian IgY binds to monocyte receptor with IgG-like structure. J. Biol. Chem. 2008, v. 283, p. 16384-16390.
  27. Fellah J.S., Kerfourn F., Wiles M.V. et al. Phylogeny of immunoglobulin heavy chain isotypes: structure of the constant region of Ambystoma mexicanum upsilon chain deduced from cDNA sequence. Immunogenetics. 1993, v. 38, p. 311-317.
  28. Рахматуллин И.М. К механизму действия сывороточных антигенов на центральную нервную систему. Диссертация канд. мед. наук. Казань, 1953.
  29. Viertlboeck B.C., Schweinsberg S., Hanczaruk M.A. et al. The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. PNAS. 2007, v. 104, p. 11718-17723.
  30. Arnon T.I., Kaiser J.T., West A.P. et al. The crystal structure of CHIR-AB1, a primordial avian classical Fc receptor. J. Mol. Biol. 2008, v. 381, p. 1012-1024.
  31. Taylor A.I., Beavil R.L., Sutton B.J., Calvert R.A. A monomeric chicken IgY receptor binds IgY with 2:1 stoichiometry. J. Biol. Chem. 2009, v. 284, p. 24168-24175.
  32. Purzel J., Schmitt R., Viertlboeck B.C., Gobel T.W. Chicken IgY binds its receptor at CH3/CH4 interface similarly as the human IgA: FcaRI interaction. J.Immunol. 2009, v. 183, p. 4554-4559.
  33. Windau K., Viertlboeck B.C., Gobel T.W. The turkey Ig-like receptor family: identification, expression and function. PLOS ONE. 2013, v. 8, e 59577.
  34. Chand N., Eyre P. Acute systemic anaphylaxis in adult domestic fowl - possible role of vasoactive lipids and peptides. Arch. Int. Pharmacodyn. Ther. 1978, v. 236, p. 164-176.
  35. Ettinger A.C., Hirata A.A., Van Alten P.J. Differential susceptibilities of young and adult chickens to passive cutaneous anaphylactic reaction. Immunology. 1970, v. 19, p. 257-266.
  36. Faith R.E., Clem L.W. Passive cutaneous anaphylaxis in the chicken. Biological fractionation of the mediating antibody population. Immunology. 1973, v. 25, p. 151-164.
  37. Bellavia A., Marino V., Gallo E. еt al. Contact sensitivity to oxazolone in the chicken: evidence for Arthus type hypersensitivity of the cutaneous reaction. Immunopharmacol. Immunotoxicol. 1992, v. 14, p. 233-250.
  38. Chand N., Eyre P. The pharmacology of anaphylaxis in the chicken intestine. Br. J. Pharmacol. 1976, v. 57, p. 399-408.
  39. Chand N., Eyre P. Anaphylactic contraction of pulmonary blood vessels of chicken. Br. J. Pharmacol. 1977, v. 59, p. 201-208.
  40. Wilson A.B., Heller E.D. Passive sensitization of tissue cells. V. The detection of chicken antibodies cytophilic for basophils and eosinophils. Int. Arch. Allergy Appl. Immunol. 1976, v. 51, p. 68-79.
  41. Свиридов В.В. Гомоцитотропные антитела и пассивная кожная анафилаксия у мышей разных линий. Диссертация канд. мед. наук. М., 1977, 142 с.
  42. Finkelman F.D., Rothenberg M.E., Brandt E.B. et al. Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J. Allergy Clin. Immunol. 2005, v. 115, p. 449-457.
  43. Гущин И.С. Аллергическая проницаемость барьерных тканей - стратегическая проблема аллергологии. Пульмонология. 2006, № 3, с. 5-13.
  44. Гущин И.С. Эпидермальный барьер и аллергия. Рос. Аллергол. Журн. 2007, № 2, с. 3-16.
  45. Гущин И.С. Преодоление аллергенами тканевого барьера - решающая форма предрасположения к аллергии. Пат. физиол. 2009, № 9, с. 8-13.
  46. Renkonen J., Mattila P., Lehti S. et al. Birch pollen allergen Bet v 1 binds to and is transported through conjunctival epithelium in allergic patients. Allergy. 2009, v. 64, p. 868-875.
  47. Post S., Nawijn M.C., Jonker M.R. et al. House dust mite-induced calcium signaling instigates epithelial barrier disfunction and CCL20 production. Allergy. 2013, v. 68, p. 1117-1125.
  48. Eyrich K., Novak N. Immunology ofatopic eczema: overcoming the Th1/Th2 paradigm. Allergy. 2013, v. 68, p. 974-982.
  49. Zhou J.S., Sandomenico A., Severino V. et al. An IgE receptor mimetic peptide (PepE) protects mice from IgE mediated anaphylaxis. Mol Biosyst. 2013, v. 11, p. 2853-2859.
  50. Oettgen H.C., Martin T.R., Wynshaw-Boris A. et al. Active anaphylaxis in IgE-deficient mice. Nature. 1994, v. 370, p. 367-370.
  51. Arimura A., Nagata M., Watanabe A. et al. Production of active and passive anaphylactic shock in WBB6F1 mouse, a mast cell-deficient strain. Experientia. 1990, v. 46, p. 739-742.
  52. Choi I.H., Shin Y.M., Park J.S. et al. Immunoglobulin E-dependent active fatal anaphylaxis in mast cell-deficient mice. J. Exp. Med. 1998, v. 188, p. 1587-1592.
  53. Dombrowicz D., Flamand V., Miyajima I. et al. Absence of FcsRI a chain results in upregulation of FcyRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between FcsRI and FcyRIII for limiting amounts of FcR β and γ chains. J. Clin. Invest. 1997, v. 99, p. 915-925.
  54. Гущин И.С., Читаева В.Г. Аллергия к насекомым. Клиника, диагностика и лечение. М., «Фармарус Принт». 2003, 328 с.
  55. Meiler F., Zumkehr J., Klunber S. et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 2008, v. 205, p. 2887-2898.
  56. Holloway J.A., Warner J.O., Vance G.H. et al. Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet. 2000, v. 356, p. 1900-1902.
  57. Szepfalusi Z., Pichler J., Elsasser S. еt al. Transplacental priming of the human immune system with environmental allergens can occur early in gestation. J. Allergy Clin. Immunol. 2000, v. 106, p. 530-536.
  58. Fusaro A.E., de Brito C.A., Tanigushi E.F. et al. Balance between early life tolerance and sensitization in allergy: dependence on the timing and intensity of prenatal and postnatal allergen exposure of the mother. Immunology. 2009, v. 128, p. e541-e550.
  59. Uthoff H., Spenner A., Reckelkamm W. et al. Critical role of preconceptional immunization for protective and nonpatho logical specific immunity in murine neonates. J. Immunol. 2003, v. 71, p. 3485-3492.
  60. Polte T., Hennig C., Hansen G. Allergy prevention starts before conception: maternofetal transfer of tolerance protects against the development of asthma. J. Allergy Clin. Immunol. 2008, v. 122, p. 1022-1030.
  61. Jones C.A., Holloway J.A., Warner J.O. Does atopic disease start in foetal life? Allergy. 2000, v. 55, p. 2-10.
  62. Jones C.A., Holloway J.A., Warner J.O. Fetal immune responsiveness and routes of allergic sensitization. Pediatr. Allergy Immunol. 2002, v. 13 (Suppl. 15), p. 19-22.
  63. Barret E.G. Maternal influence in the transmission of asthma susceptibility. Pulm. Pharmacol. Ther. 2008, v. 21, p. 474-484.
  64. Hertz-Picciotto I., Park H.Y., Dostal M. et al. Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin. Pharmacol. Toxicol. 2008, v. 102, p. 146-154.
  65. Pyrhonen K., Laara E., Hiltunen L. et al. Season of the first trimester of pregnancy predicts sensitisation to food allergens in childhood: a population-based cohort study from Finland. J. Epidimiol. Community Health. 2012, v. 66, p. 49-56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2014



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies