Eosinophils and allergy



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of the modern scientific researches regarding a new view on a role of eosinophils in allergy as multifunctional cells are colligated in the review. First of all, it concerns participation of eosinophils in regulation of Th2type of the immune response, in formation of allergic inflammation and tissue damage. Their role in outcome of these processes - reparation or chronization of illness, including mechanisms of tissue remodeling is also very important.

Full Text

Restricted Access

About the authors

B A Chernyak

Irkutsk State Medical Academy of Postgraduate Education

Email: ba.chernyak@gmail.com

I I Vorzheva

Irkutsk State Medical Academy of Postgraduate Education

References

  1. Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunological Reviews. 2011, v. 242, p. 161-177.
  2. Черняк Б.А., Воржева И.И. Лекарственно-индуцированные легочные эозинофилии. Рос. Аллергол. Журн. 2011, № 4, с.15-22.
  3. Samitas K., Radinger M., Bossios A. Current update on eosinophilic lung diseases and antiIL5 treatment recent patents on anti-infective drug. Discovery. 2011, v. 6, p. 189-205.
  4. Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. М., «Фармарус Принт Медиа», 2010, c. 228.
  5. Rosenberg H.F., Dyer K.D., Foster P.S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 2013, v. 13, p. 9-22.
  6. Blanchard C., Rothenberg M.E. Biology of the Eosinophils. Advances in Immunology. 2009, v. 101, p. 81-121.
  7. Melo R.C., Liu L., Xenakis J., Spencer L. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013, v. 68, №. 3, p. 274-284.
  8. Bystrom J., Amin K., Bishop-Bailey D. Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte. Respiratory Research. 2011, v. 12, №. 1, p. 10-27.
  9. Shamri R., Xenakis J.J., Spencer L.A. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011, v 343, p. 57-83.
  10. Rothenberg M.E., Hogan S.P. The Eosinophil. Ann. Rev. Immunol. 2006. v. 24, p. 147-174.
  11. Dyer K.D., Percopo C.M., Xie Z. et al. Mouse and human eosinophils degranulate in response to platelet activating factor (PAF) and lyso-PAF via a PAF-receptor-independent mechanism: evidence for a novel receptor. J. Immunol. 2010, v. 184, p. 6327-6334.
  12. Plotz S.G., Lentchat A., Behrendt H. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood. 2001, v. 97, p. 235-241.
  13. Sabroe I., Jones E.C., Usher L.R. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 2002, v. 168, p. 4701-4710.
  14. Nagase H. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 2003, v. 171, p. 3977-3982.
  15. Cirino G., Vergnolle N. Proteinase-activated receptors (PARs): crossroads between innate immunity and coagulation. Curr. Opin. Phamacol. 2006, v. 6, p. 428-434.
  16. Shpacovitch V., Feld M., Bunnett N.W., Steinhoff M. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol. 2007, v. 28, p. 541-550.
  17. Wada K., Matsuwaki Y., Moriyama H., Kita H. Cockroach induces inflammatory responses through protease-dependent pathways. Int. Arch. Allergy Immunol. 2011, v. 155, p. 135-141.
  18. Sookrung N., Chaicumpa W. A revisit to cockroach allergens. Asian Pac. J. Allergy Immunol. 2010, v. 28, №. 2-3, p. 95-106.
  19. Masuwaki Y., Wada K., Moriyama H. Human eosinophil innate response to Alternaria fungi through protease-activated recaptor-2. Int. Arch. Allergy Immunol. 2011, v. 155, р. 123-128.
  20. Miike S., Kita H. Human eosinophils are activated by cysteine proteases and release inflammatory mediators. J. Allergy Clin. Immunol. 2003, v. 111. p. 704-713.
  21. Matsuwaki Y., Wada K., White TA. et al. Recognition of fungal protease activities induces cellular activation and eosinophil -derived neurotoxin release in human eosinophils. J. Immunol. 2009, v. 183, p. 6708-6716.
  22. Lotfi R., Herzog G.I., DeMarco R.A. et al. Eosinophils oxidize damage-associated pattern molecules derived from stressed cells. J. Immunol. 2009, v. 183, p. 5023-5031.
  23. Yoon J., Ponikau J.U., Lawrence C.B. Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J. Immunol. 2008, v. 181, p. 2907-2915.
  24. Van Dyken S.J., Garcia D., Porter P. et al. Fungal chitin from asthma associated home environments induces eosinophilic lung infiltration. J. Immunol. 2011, v. 187, p. 2261-2267.
  25. Rylander R. Organic dust induced pulmonary disease - the role of mould derived Р-glucan. Ann. Agric. Environ. Med. 2010, v. 17, p. 9-13.
  26. Plotz S.G., Traidl-Hoffmann C., Feussner I. et al. Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associated lipid mediators. J. Allergy Clin. Immunol. 2004, v. 113, №. 6, p. 1152-1160.
  27. Spencer L.A., Weller P.F. Eosinophils and Th2 immunity: contemporary insights. Immunol. Cell Biol. 2010, v. 88, p. 250-256.
  28. Amsen D., Blander J.M., Lee G.R. et al. Instruction of distinct CD4 T-helper cell fates by different notch ligands on antigen-presenting cells. Cell. 2004, v. 117, p. 515-526.
  29. Radke A.L., Reynolds L.E., Melo R.C. et al. Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood. 2009, v. 113, p. 3092-3101.
  30. Akuthota P., Wang H., Weller P. Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr. Opin. Allergy Clin. Immunol. 2010, v. 10, №. 1, p. 14-19.
  31. Schwartz R.H. Immunology. It takes more than two to tango. Nature. 2001, v. 409, p. 31-32.
  32. Celestin J., Rotschke O., Falk K. IL-3 induces B7 2 (CD86) expression and costimulatory activity in human eosinophils. J. Immunol. 2001, v. 167, p. 6097-6104.
  33. Shi H.Z., Humbles A., Gerard C. et al. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J. Clin. Invest. 2000, v. 105. p. 945-953.
  34. Wang H.B., Ghiran I., Matthaei K., Weller P.F. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J. Immunol. 2007, v. 179, p. 7585-7592.
  35. Duez C., Dakhama A., Tomkinson A. et al. Migration and accumulation of eosinophils toward regional lymph nodes after airway allergen challenge. J. Allergy Clin. Immunol. 2004, v. 114, p. 820-825.
  36. Shi H.Z., Xiao C., Li C.Q. et al. Endobronchial eosinophils preferentially stimulate T-helper cell type 2 responses. Allergy. 2004, v. 59, p. 428-435.
  37. Yang D., Rosenberg H.F., Chen Q. et al. Eosinophil-derived neurotoxin, an antimicrobial protein with chemotactic activities for dendritic cells. Blood. 2003, v. 102, p. 3396-3403.
  38. Yang D., Chen Q., Rosenberg H.F. et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J. Immunol. 2004, v. 173, p. 6134-6142.
  39. Yang D., Chen Q., Su S. B. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-My D88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 2008, v. 205, p. 79-90.
  40. Rose C.E., Lannigan J.A., Kim P. et al. Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol. Immunol. 2010, v. 7, №. 5, p. 361-374.
  41. Kolodziej L.R., Paleolog E.M., Williams R.O. Kynurenine metabolism in health and disease. Amino Acids. 2011, v. 41, №. 5, p. 1173-1183.
  42. Odemuyiwa S., Ghahary A., Li Y. et al. Cutting edge: human eosinophil regulate T-cell subset selection through indoleamine 2,3-dioxygenase. J. Immunol. 2004, v. 173, p. 5909-5913.
  43. Tulic M.K., Sly P.D., Andrews D. et al. Thymic indoleamine 2,3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system. Am. J. Pathol. 2009, v. 175, p. 2043-2052.
  44. Stone K.D., Prussin C., Metcalfe D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010, v. 125, Suppl. 2, p. 73-80.
  45. Wong C.K., Sinnie S.M., Lun S.W et al. Signalling mechanisms regulating the activation of human eosinophils by mastcell-derived chymase: implications for mast cell-eosinophil interaction in allergic inflammation. Immunology. 2008, v. 126, p. 579-587.
  46. Schulze J., Voss S., Zissler U. et al. Airway responses and inflammation in subjects with asthma after four days of repeated high-single-dose allergen challenge. Respiratory Research. 2012, v. 13, p. 1-12.
  47. Hoshino M. Comparison of effectiveness in ciclesonide and fluticasone propionate on small airway function in mild asthma. Allergol. Int. 2010, v. 59, No. 1, p. 59-66.
  48. Green R.H., Brightling C.E., McKenna S. et al. Asthma exacerbations and sputum eosinophil counts: a randomized controlled trial. Lancet. 2002, v. 360, р. 1715-1721.
  49. Hatzivlassiou M., Grainge C., Kehagia V. et al. The allergen specificity of the late asthmatic Reaction. Allergy, 2010, v. 65, №. 3, p. 355-358.
  50. Piliponsky A., Gleich G.J., Bar I., Levi-Schaffer F. Effects of eosinophils on mast cells: new pathway for the perpetuation of allergic inflammation. Mol. Immunol. 2002, v. 38, p. 1369-1370.
  51. Piliponsky A., Gleich G.J., Bar I., Levi-Schaffer F. Non-IgE-dependent activation of human lung- and cord blood-derived mast cells is induced by eosinophil major basic protein and modulated by the membrane form of stem cell factor. Blood. 2003, v. 101, p. 1898-1904.
  52. Гущин И.С. Аллергическое воспаление и его фармакологический контроль. М., «Фармарус Принт». 1998, 252 с.
  53. Detoraki A., Granata F., Staibano S.F. et al. Angiogenesis and lymphangiogenesis in asthma. Allergy. 2010, v. 65, p. 946-958.
  54. Halwani R., Al-Muhsen S., Al-Jahdali H. Role of transforming growth factor-Р in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol. 2011, v. 44, №. 2, p. 127-133.
  55. Puxeddu I., Ribatti D., Crivellato E. Mast cells and eosinophils: A novel link between inflammation and angiogenesis in allergic diseases. J. Allergy Clin. Immunol. 2005, v. 116, p. 531-536.
  56. Noguchi H., Kephart G.M., Colby T.V., Gleich G. J. Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am. J. Pathol. 1992, v. 140, p. 521-528.
  57. Li X., Wilson J. W. Increased vascularity of the bronchial mucosa in mild asthma. Am. J. Respir. Crit. Care Med. 1997, v. 156, p. 229-233.
  58. Redington A. E., Roche W. R., Madden J. et al. Basic fibroblast growth factor in asthma: measurement in bronchoalveolar lavage fluid basaly and following allergen challenge. J. Allergy Clin. Immunol. 2001, v. 107, p. 384-387.
  59. Huang J., Olivenstein R., Taha R. et al. Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. Am. J. Respir. Crit. Care Med. 1999, v. 160, №. 2, p. 725-729.
  60. Bruce S., Bochner M.D., Gerald J. Gleich M.D. What targeting the eosinophil has taught us about their role in diseases. J. Allergy Clin. Immunol. 2010, v. 126, №. 1, p. 16-25.
  61. Ochkur S.I., Jacobsen E.A., Protheroe C.A. et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J. Immunol. 2007, v. 178, p. 7879-7889.
  62. Hoshino M., Takahashi M., Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J. Allergy Clin. Immunol. 2001, v. 107, p. 295-301.
  63. Hoshino M., Nakamura Y., Hamid Q.A. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J. Allergy Clin. Immunol. 2001, v. 107. p. 1034-1038.
  64. Phipps S., Ying S., Wangoo A. The relationship between allergen-induced tissue eosinophilia, markers of repair and remodeling in human atopic skin. J. Immunol. 2002, v. 169, p. 604-612.
  65. Lee C., Link H., Baluk P. et al. Vascular endothelial growth factor induces remodeling and Enhances Th2-mediated sensitization and inflammation in the lung. Nat. Med. 2004, v. 10, p. 1095-1099.
  66. Hoshino M., Takahashi M., Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J. Allergy Clin. Immunol. 2001, v. 107, p. 295-301.
  67. Lee Y.C., Kwak Y.G., Song C.H. Contribution of vascular endothelial growth factor to airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J. Immunol. 2002, v. 168, p. 3595-3600.
  68. Feistritzer C., Kaneider N. C., Sturn D. H. et al. Expression and function of the vascular endothelial growth factor receptor FLT-1 in human eosinophils. Am. J. Respir. Cell Mol. Biol. 2004, v. 30, p. 729-735.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2013



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies