Sputum characteristics and evaluation of airways inflammation peculiarities in patients with bronchial asthma and chronic obstructive pulmonary disease



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The aim of the study was to investigate cellular phenotypes of the spontaneous sputum, estimate possibilities of cytological sputum analysis in evaluation of airways inflammation peculiarities in comparison with the expired nitric oxide level and respiratory function tests. Materials and methods. functional properties of neutrophils were evaluated by respiratory burst intensity. 72 patients were included, 23 - with moderate bronchial asthma course and chronic bronchitis, 18 - with moderate bronchial asthma and COPD, 31 patient had COPD only. All patients were examined in the exacerbation period, all of them had productive cough. Results. Cytological phenotypes were stated as well as the links between different sputum cells presence and between cytological peculiarities, inflammation and functional state of the respiratory system. Functional defects of neutrophils were found in COPD patients.

Full Text

Restricted Access

About the authors

G B Fedoseev

First SaintPetersburg State Medical University named after I.P. Pavlov

Email: fedoseevsp@mail.ru

V I Trofimov

First SaintPetersburg State Medical University named after I.P. Pavlov

K V Negrutsa

First SaintPetersburg State Medical University named after I.P. Pavlov

V G Timchik

First SaintPetersburg State Medical University named after I.P. Pavlov

E E Zueva

First SaintPetersburg State Medical University named after I.P. Pavlov

E V Gorovneva

First SaintPetersburg State Medical University named after I.P. Pavlov

N N Rogachevskaya

First SaintPetersburg State Medical University named after I.P. Pavlov

T S Razumovskaya

First SaintPetersburg State Medical University named after I.P. Pavlov

V A Alexandrin

First SaintPetersburg State Medical University named after I.P. Pavlov

V I Golubeva

First SaintPetersburg State Medical University named after I.P. Pavlov

I V Birula

First SaintPetersburg State Medical University named after I.P. Pavlov

N A Filippova

First SaintPetersburg State Medical University named after I.P. Pavlov

K N Kryakunov

First SaintPetersburg State Medical University named after I.P. Pavlov

References

  1. Soler N., Esperatti M., Ewing S. et al. Sputum purulence - guided antibiotic use in hospitalized patients with exacerbations of COPD. Eur. Resp. J. 2012, v. 40, р. 1344-1353.
  2. Preto L. Induced sputum as a method for the study of bronchial inflammation. Arch. Broncopneumol. 2011, v. 47, р. 323-324.
  3. Gibson P.G., Girgis-Gabardo F., Morris M.M. et. al. Cellular characteristics of sputum from patients with asthma and chronic bronchitis. Thorax. 1989, v. 44, р. 689-692.
  4. Mohamed N.R., Abdel Grany E.A., Othman K.M. Analysis of induced sputum in patients with bronchial asthma. Egypt. J. Chest Diseases and Tuberculosis. 2014, v. 63, р. 21-27.
  5. Bhowmik A., Seemungal T.A.R., Sapsford R.J. et al. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. Thorax. 1998, v. 53, р. 953-956.
  6. Chanez P., Holz O., Ind P.W. et al. Sputum induction Eur. Respir. J. 2002, v. 20, р. 3-8.
  7. Schleich F.N., Manise M., Sele J. et al. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulmonary Medicine. 2013, v. 13, р. 1.
  8. Moore W.C. Update in asthma 2008. Am. J. Respir. Crit. Care Med. 2009, v. 179, р. 869-874.
  9. Jayaran I., Pizzichini M.M., Cook R.J. et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur. Respir. J. 2006, v. 27, р. 483-494.
  10. Chlumsky I., Striz I., Terl M. et al. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J. Int. Med. Res. 2006, v. 34, р. 129-139.
  11. Makker H.K., Holgate S.T. The contribution of neurogenic reflexes to hypertonic saline-induced bronchoconstriction in asthma. J. Allergy Clin. Immunol. 1993, v. 92, р. 82-88.
  12. Keatings P.J., Barnes P.J. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma and normal subjects. Am. J. Respir. Crit. Care Med. 1997, v. 155, р. 449-453.
  13. Prieto L. Induced sputum as a method for the study ofbronchial inflammation. Arch. Brocopneumol. 2011, v. 47, р. 323-324.
  14. Berry M., Morgan A., Shaw D.E. et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007, v. 62, р. 1043-1049.
  15. McGrah K.W., Icitovic N., Boushey H.A. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 2012, v. 185, р. 612-619.
  16. Leuppi J.D., Salone C.M., Jenkins et al. Markers of airway inflammation and hyperresponsiveness in patients with well-controlled asthma. Eur. Respir. J. 2001, v. 18, р. 444-450.
  17. Parameswaran N. What is an «eosinophilic phenotype» of asthma? J. Allergy Clin. Immunol. 2013, v. 132, р. 81-83.
  18. Bartoli M.L., Bassi E., Carnevali S. et al. Clinical assessment of asthma severity partially corresponds to sputum eosinophilic airway inflammation. Respiratory Med. 2004, v. 98, р. 184-193.
  19. Fleming L., Wilson N., Ragemey N., Bush A. Use of sputum eosinophil counts to guide management in children with severe asthma. Thorax. 2012, v. 67, р. 193-198.
  20. Fabbri L.M., Romagnoli M., Corbetta L. et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am. Respir. Crit. Care Med. 2003, v. 167, р. 418-423.
  21. Gibson P.G., Simpson J.L., Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest. 2001, v. 119, р. 1329-1336.
  22. Telenga E. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012, v. 67, р. 1060-1068.
  23. Фомина Д.С., Дробик О.С., Горячкина Л.А. Фенотипирование бронхиальной астмы с элементами эндотипирования: перспективы развития направления. Consilium medicum. 2012, № 11, с. 15-18.
  24. Fahy J.V. Eosinophilic and neutophilic inflammation in asthma. Insights from clinical studies. Proc. Am. Thorac. Soc. 2009, v. 6, р. 256-259.
  25. Jatakano A., Uasuf C., Maziak W. et al. Neutrophilic inflammation in severe persistent asthma. Am. J. Respir Crit. Care Med. 1999, v. 160, р. 1532-1539.
  26. Hoskins G., McCowan C., Neville R.G. et al. Risk factors and costs associated with an asthma attack. Thorax. 2000, v. 55, р. 19-24.
  27. Wark P.A.B., Johnston S.L., Moric I.L. et al. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur. Respir. J. 2002, v. 19, р. 68-75.
  28. Zhang Q., Illin R., Hui Ch.K. et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respirat. Res. 2012, v. 13, р. 35-42.
  29. Horvat J.C., Starkey M.R., Kim R.Y. Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. J. Immunol. 2010, v. 184, р. 4159-4169.
  30. Wang F., He X.I., Baines K.Y. et al. Different inflammatory phenotypes in adults and children with acute asthma. Eur. Resp. J. 2011, v. 38, р. 567-574.
  31. Shiral A. Modeling neutrophil transport in pulmonary capillaries. Respir. Physiol. Neurobiol. 2008, v. 163, р. 158-165.
  32. Soler N., Torres A. Significance of sputum purulence to guide antibiotic therapy in exacerbations of COPD. Eur. Resp. J. 2013, v. 41, р. 248-249.
  33. Murray M.P., Pentland J.L., Turnbull K. et al. Sputum color: a useful clinical tool in noncystic fibrosis bronchiectasis. Eur. Respir. J. 2009, v.34, р. 361-364.
  34. Aggarwal D., Mohapatra P.R., Aggarwal P. Significance of sputum purulence to guide antibiotic therapy in exacerbations of COPD. Eur. Resp. J. 2013, v. 41, р. 248.
  35. Stockley R.A., Bayley D., Hill A.M. et al. Assessment of airway neutrophils by sputum color: correlation with airways inflammation. Thorax. 2001, v. 56, р. 366-372.
  36. Stockley R.A., O'Brien C., C.Rye A. et al. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest. 2000, v. 117, р. 1638-1645.
  37. Simpson J.L., Powell H., Boyle M.J. et al. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. Crit. Care Med. 2008, v. 177, р. 148-155.
  38. Fahy Y.V. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Allergy. 2010, v. 2, р. 10-15.
  39. Lee B.J., Moon H.G., Shin T.S. et al. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-γ. Exp. Molek. Med. 2011, v. 43, р. 169-176.
  40. Mohamed N.R., Ghany E.A.A., Ohman K.M. Analysis of induced sputum in patients with bronchial asthma. Egypt. J. Chest Diseases and Tuberculosis. 2014, v. 63, р. 21-27.
  41. Li A.M., Tsang T.W.T., Chan D.F.Y. et al. Cough frequency in children with mild asthma correlates with sputum neutrophil count. Thorax. 2006, v. 61, р. 747-750.
  42. Wang F., He X.Y., Baines K.J. et al. Different inflammatory phenotypes in adult and children with acute asthma. Eur. Resp. J. 2011, v. 38, р. 567-574.
  43. Bandyopadhyay A., Roy P.P., Saha K. et al. Usefulness of induced sputum eosinophil count to assess severity and treatment outcome in asthma patients. Lung. India. 2013, v. 30, р. 117-123.
  44. Berry M., Morgan A., Shaw D. et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007, v. 62, р. 1043-1049.
  45. Haldar P., Brighting C.E., Halgadon B. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009, v. 360, р. 973-984.
  46. Fleming L., Tsartsali L., Wilson N. et al. Sputum inflammatory phenotypes are not stable in children with asthma. Thorax. 2012, v. 67, р. 675-681.
  47. Hancox R.J., Cowan D.C, Aldridge R.E. et al. Asthma phenotypes: consistency of classification using induced sputum. J. Respirology. 2012, v. 17, р. 461-466.
  48. Aldrige R.E., Hancox R.E., Robin T.D. et al. Effects or terbutalie and budesonide on sputum cells and bronchial hyperresponsiveness in asthma. Am. J. Respir. Crit. Care Med. 2000, v. 161, р. 1459-1464.
  49. Hancox R.J., Cowan D.C., Aldridge R.F. et al. Asthma phenotypes: Consistency of classification using induced sputum. J. Respirology. 2012, v. 17, р. 461-466.
  50. Hurst J.R. Exacerbation, phenotyping in chronic obstructive pulmonary disease. Am. J. Res. Crit. Care Med. 2011, v. 184, р. 625-626.
  51. Hurst J.R., Donaldson G.C., Perera W.R. et al. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006, v. 174, р. 867-874.
  52. Aldridge R.E., Hencox R.J., Cowant J.O. et al. Eosinophils and eosinophilic cationic protein in induced sputum and blood: effects of budesonide and terbutaline. Ann. Allergy Asthma, Immunol. 2002, v. 89, р. 492-497.
  53. Hastie A.M., Moore W.C., Li H. et al. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J. Allergy Clin. Immunol. 2013, v. 132, р. 72-80.
  54. Pizzichini E., Pizzichini M.M., Efthimiadis A. et al. Measuring airway inflammation in asthma: eosinophils and eosinophilic cationic protein in induced sputum compared with peripheral blood. J. Allergy Clin. Immunol. 1997, v. 99, р. 539-544.
  55. Virchow J.C., Holscher V., Virchow C. Sputum ECP levels correlate with parameters of airflow obstruction. Am. Rev. Respir. Dis. 1992, v. 146, р. 604-606.
  56. Gorska K., Krenke R., Korczynski P. et al. Eosinophilic airway inflammation in chronic obstructive pulmonary disease and asthma. J. Physiol. Pharmacol. 2008, v. 59, р. 261-270.
  57. Gibson P.J., Girgis-Gabardo A., Morris M.M. et al. Cellular characteristics of sputum from patients with asthma and chronic bronchitis. Thorax. 1989, v. 44, р. 693-699.
  58. Bandyopadhyay A., Roy P.P., Saha K. et al. Usefulness of induced sputum eosinophil count to assess severity and treatment outcome in asthma patients. Lung. India. 2013, v. 30, р. 117-123.
  59. Sutherland E.R., Lehman E.B., Teodorescu M., Wechsler M.E. Bode mass index and phenotype in subjects with mildtomoderate persistent asthma. J. Allergy. Clin. Imunol. 2009, v. 123, р. 1328-1334.
  60. Wu D., Molofsky A.B., Liang H.E. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011, v. 332, р. 243-247.
  61. Wood I., Barnes K.J. Fu J. et al. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012, v. 142, р. 86-93.
  62. Dahl M., Tybjaerg-Hansen A., Vestbo J. et al. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am. J. Respir Crit. Care Med. 2001, v. 164, р. 1008-1011.
  63. Matsumoto K., Tarakawa M., Fukuda S., Saito H. Rapid and strong induction of apoptosis in human eosinophils by anti-CD30 mAb-coated microspheres and phagocytosis b macrophages. Int. Arch. Allergy Immunol. 2007, v. 143, р. 60-67.
  64. Woolley K.L., Gibson P.G., Carty K. et al. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care. Med. 1996, v. 154, р. 237-243.
  65. Dvorak A., Weller P.F., Monahan-Earley R.A. et al. Ultra-structural localization of Charco-Leyden crystal protein (lysophospholipase) and peroxidase in macrophages, eosinophils, and extracellular matrix of the skin in the hypereosinophilic syndrome. Lab. Invest. 1990, v. 62, р. 590-607.
  66. Kulkarni N.S., Hollins F., Sutcliff A. et al. Eosinophil protein in airway macrophages: A novel biomarker of eosinophilic inflammation in patients with asthma. J. Allergy Clin. Immunol. 2010, v. 126, р. 61-69.
  67. Baines K.J., Simpson J.L., Wood L.G. et al. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immynol. 2011, v. 127, р. 153-160.
  68. Федосеев Г.Б., Трофимов В.И., Тимчик В.Г. и соавт. Особенности воспаления у больных бронхиальной астмой и хронической обструктивной болезнью легких и маркеры воспаления. Рос. Аллерголог. Журн. 2014, № 2, с. 44-59.
  69. Федосеев Г.Б., Трофимов В.И., Тимчик В.Г. и соавт. Оксид азота в выдыхаемом воздухе у больных бронхиальной астмой и хронической обструктивной болезнью легких в зависимости от особенностей течения заболевания. Рос. Аллерголог. Журн. 2013, № 2, с. 12-19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2015



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies