Epidermal barrier defect in atopic dermatitis children and its role in the development of allergic sensitization and respiratory allergy

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Atopic dermatitis (AD) is the most common allergic disease in young children which is often (almost in half of cases) the beginning of so-called «allergic march», followed by the addition of respiratory allergy symptoms. In this review we present some studies to explain one of the possible mechanisms for the realization of allergic march associated with transepidermal sensitization in atopic dermatitis infants. Perhaps, the data may help in establishment of new strategies for allergy prevention in the near future.

Full Text

Restricted Access

About the authors

N B Migacheva

Samara State Medical University

Email: nbmigacheva@gmail.com

A V Zhestkov

Samara State Medical University

T I Kaganova

Samara State Medical University

O G Elisutina

Institute of Immunology

G I Bibarsova

Samara State Medical University

O V Shtyrbul

Institute of Immunology


  1. Pawankar R., Canonica G.W., Holgate S.T, Lockey R.F. WAO White Book of Allergy 2011-2012: Executive Summary. World Allergy Organization. 2011, 220 p.
  2. Spergel J.M. From atopic dermatitis to asthma: the atopic march. Ann. Allergy Asthma Immunol. 2010, v. 105, p. 99-106.
  3. Аллергия у детей: от теории - к практике (монография). Под ред. Л.С. Намазовой-Барановой. М., Союз педиатров России. 2011, 668 с.
  4. Bouwstra J.A., Pilgrim K., Ponec M. Structure of the skin barrier, in Skin barrier, edited by P.M. Elias, K.R. Feingold. New York, “Naylor and Francis”. 2006, 65 p.
  5. Kezic S., Novak N., Jakasa I. et al. Skin barrier in atopic dermatitis. Front. Biosci. 2014, v. 1, p. 542-556.
  6. Shaker M. New insights into the allergic march. Curr. Opin. Pediatr. 2014, v. 26, p. 516-520.
  7. Li M. Current evidence of epidermal barrier dysfunction and thymic stromal lymphopoetin in the atopic march. Eur. Respir. Rev. 2014, v. 23, p. 292-298.
  8. Kubo A., Nagao K., Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 2012, v. 122, p. 440-447.
  9. Детская аллергология: руководство для врачей. Под ред. А.А. Баранова, И.И. Балаболкина. М., «Гэотар-Медиа». 2006, 688 с.
  10. Елисютина О.Г., Феденко Е.С., Болдырева М.Н., Гудима Г.О. Особенности иммунного ответа и роль некоторых цитокинов при атопическом дерматите. Рос. Аллергол. Журн. 2015, № 1, с. 3-14.
  11. Valdman-Grinshpoun Y., Ben-Amitai D., Zvulunov A. Barrier-restoring therapies in atopic dermatitis: current approaches and future perspectives. Dermatol. Res. Pract. 2012, v. 2012, p. 1-6.
  12. Levin J., Friedlander S.F., Del Rosso J.Q. Atopic dermatitis and the stratum corneum: part 1: the role of filaggrin in the stratum corneum barrier and atopic skin. J. Clin. Aesthet. Dermatol. 2013, v. 6, p. 16-22.
  13. Lee S.H., Jeong S.K., Ahn S.K. An update of the defensive barrier function ofskin. Yonsei. Med. J. 2006, v. 47, p. 293-306.
  14. Kezic S., Kemperman P.M., Koster E.S. et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J. Invest. Dermatol. 2008, v. 128, p. 2117-2119.
  15. Flohr C., Perkin M., Logan K. et al. Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J. Invest. Dermatol. 2014, v. 134, p. 345-350.
  16. Ring J., Mohrenschlager M., Weidinger S. Molecular genetics of atopic eczema. Chem. Immunol. Allergy. 2012, v. 96, p. 24-29.
  17. Baek J.H., Lee S.E., Choi K.J. et al. Acute modulations in stratum corneum permeability barrier function affect claudin expression and epidermal tight junction function via changes of epidermal calcium gradient. Yonsey. Med. J. 2013, v. 54, p. 523-528.
  18. Sugavara T., Iwamoto N., Akashi M. et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J. Dermatol. Sci. 2013, v. 70, p. 12-18.
  19. De Benedetto A., Rafaels N.M., McGirt L.Y et al. Tight junction defects in patients with atopic dermatitis. J. Allergy. Clin. Immunol. 2011, v. 127, p. 773-786.
  20. Hae-Jin L., Seung-Hun L. Epidermal permeability barrier defects and barrier repair therapy in atopicdermatitis. Allergy Asthma Immunology Res. 2014, v. 6, p. 276-287.
  21. Kuo I.H., Carpenter-Mendini A., Yoshida T. et al. Activation of epidermal tall-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J. Invest. Dermatol. 2013, v. 133, p. 988-998.
  22. Bieber T.H., Cork M., Reitamo S. Atopic dermatitis: a candidate for disease-modifying strategy. Allergy. 2012, v. 67, p. 969-975.
  23. Ahmad-Nejad P., Mrabet-Dahbi S., Breuer K. et al. The toll like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J. Allergy Clin. Immunol. 2004, v. 113, p. 565-567.
  24. Mauro T., Holleran W.M., Grayson S. et al. Barrier recovery is impaded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch. Dermatol. Res. 1998, v. 290, p. 215-222.
  25. Jungersted J.M., Scheer H., Mempel F. et al. Stratum corneum lipids, skin barrier function and fillagrin mutations in patients with atopic eczema. Allergy. 2010, v. 65, p. 911-918.
  26. Hachem J.P., Man M.Q., Crumrine D. et al. Sustained serine proteases activity by prolonged increase in pH leads to deg radation lipid processing enzimes and profound alterations of barrier function and stratum corneum integrity. J. Invest. Dermatol. 2005, v. 125, p. 510-520.
  27. Hatano Y., Man M.Q., Uchida Y. et al. Maintenance of an acidic stratum corneum prevents emergence of murine atopic dermatitis. J. Invest. Dermatol. 2009, v. 129, p. 1824-1835.
  28. Lee S.H., Jeong S.K., Lee S.H. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei. Med. J. 2010, v. 51, p. 808-822.
  29. Hachem J.P., Houben E., Crumrine D. et al. Serine protease signaling of epidermal permeability barrier homeostasis. J. Invest. Dermatol. 2006, v. 126, p. 2074-2086.
  30. Steinhoff M., Neisius U., Ikoma A. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 2003, v. 23, p. 6176-6180.
  31. Briot A., Lacroix M., Robin A. et al. PAR-2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J. Invest. Dermatol. 2010, v. 130, p. 2736-2742.
  32. Menendez-Gutierrez M.P., Roszer T., Ricote M. Biology and therapeutic applications of peroxisome proliferator- activated receptors. Curr. Top. Med. Chem. 2012, v. 12, p. 548-584.
  33. Ramot Y., Mastrofrancesco A., Camera E. et al. The role of PPARy-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp. Dermatol. 2015, v. 24, p. 245-251.
  34. Sertznig P., Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Dermatoendocrinol. 2011, v. 3, p. 130-135.
  35. Hatano Y., Man M.Q., Uchida Y. et al. Murine atopic dermatitis responds to peroxisome proliferator-activated receptors alpha and beta/delta (but not gamma) and liver X receptor activators. J. Allergy Clin. Immunol. 2010, v. 125, p. 160-169.
  36. Adachi Y., Hatano Y., Sakai T., Fujiwara S. Expressions of peroxisome proliferator-activated receptors (PPARs) are directly influenced by permeability barrier abrogation and inflammatory cytokines and depressed PRAPalpha modulates expressions of chemokines and epidermal differentiation-related molecules in keratinocytes. Exp. Dermatol. 2013, v. 22, p. 606-608.
  37. Staumont-Salle D., Abboud G., Brenuchon C. et al. Peroxisome proliferator-activated receptors alpha regulates skin inflammation and humoral response in atopic dermatitis. J. Allergy Clin. Immunol. 2008, v. 121, p. 962-968.
  38. Hatano Y., Elias P.M., Crumrine D. et al. Efficacy of combined peroxisome proliferator-activated receptors-alpha ligand and glucocorticoid therapy in a murine model of atopic dermatitis. Exp. Dermatol. 2011, v. 131, p. 1845-1852.
  39. Wohlfert E.A., Nichols F.C., Nevius E., Clark R.B. Peroxisome proliferator-activated receptors gamma (PPARgamma) and immunoregulation: enhancement of regulatory T cells through PRARgamma-dependent and - independent mechanisms. J. Immunol. 2007, v. 178, p. 4129-4135.
  40. Gupta M., Mahajan V.K., Mehta K.S. et al. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the ‘future’ in dermatology therapeutics? Arch. Dermatol. Res. 2015, v. 5, p. 1-14.
  41. Matzinger P. Tolerance, danger, and the extended family. Ann. Rev. Immunol. 1994, v. 12, p. 991-1045.
  42. Yang D., Chen Q., Yang H. et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as alarmin. J. Leukoc. Biol. 2007, v. 81, p. 59-66.
  43. Yang D., Chen Q., Su S.B. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate TLR2-MyD88 signal pathway in dendritic cells and enhances Th-2 immune responses. J. Exp. Med. 2008, v. 205, p. 79-90.
  44. Luthi A.U., Cullen S.P., McNeela E.A. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009, v. 31, p. 84-98.
  45. Nakae S., Morita H., Ohno T. et al. Role of interleukin-33 in innate-type immune cells in allergy. Allergol. Int. 2013, v. 62, p. 13-20.
  46. Nakajima K., Terao M., Takaishi M. et al. Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. J. Invest. Dermatol. 2013, v. 133, p. 2555-2565.
  47. Elias P.M. Lipid abnormalities and lipid-based repair strategies in atopic dermatitis. Biochim. Biophys. Acta. 2014, v. 1841, p. 323-330.
  48. Zhao L.P., Di Z., Zhang L. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J. Eur. Acad. Dermatol. Venerol. 2012, v. 26, p. 572-577.
  49. Neuber K., Steinrucke K., Ring J. Staphylococcal enterotoxin B affects in vitro IgE synthesis, interferon-gamma, interleukin-4 and interleukin-5 production in atopic eczema. Int. Arch. Allergy Immunol. 1995, v. 107, p. 179-182.
  50. Ong P.Y., Ohtake T., Brandt C. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 2002, v. 347, p. 1151-1160.
  51. Afshar M., Gallo R.L. Innate immune defense system of the skin. Vet. Dermatol. 2013, v. 24, p. 32-38.
  52. Lai Y., Gallo R.L. AMPed in immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, v. 30, p. 131-141.
  53. Aberg K.M., Man M.Q., Gallo R.L. et al. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J. Invest. Dermatol. 2008, v. 128, p. 917-925.
  54. Nomura I., Goleva E., Howell M.D. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 2003, v. 171, p. 3262-3269.
  55. Ballardini N., Johansson C., Lilja G. et al. Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br. J. Dermatol. 2009, v. 161, p. 40-47.
  56. Oyoshi M.K., Larson R.P., Ziegler S.F., Geha R.S. Mechanical injury polarizes skin dendritic cells to elicit a Th2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010, v. 126, p. 976-984.
  57. Li M. Current evidence of epidermal barrier dysfunction and thymic stromal lymphopoietin in the atopic march. Eur. Respir. Rev. 2014, v. 23, p. 292-298.
  58. Elentner A., Finke D., Schmuth M. et al. Langerhans cells are critical in the development of atopic-dermatitis-like inflammation and symptoms in mice. J. Cell. Mol. Med. 2009, v. 13, p. 2658-2672.
  59. Klechevsky E., Morita R., Liu M. et al. Functional specialization of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008, v. 29, p. 497-510.
  60. Nakajima S., Igyarto B.Z., Honda T et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 2012, v. 129, p. 1048-1055.
  61. Novak N., Valenta R., Bohle B. et al. FcεRI engagement of Langerhans cell-like dendritic cells and infkammatory dendritic epidermal cell-like dendritic cells inducees chemotactic signals and different T-cell phenotypes in vitro. J. Allergy Clin. Immunol. 2004, v. 113, p. 949-957.
  62. Tomura M., Honda T., Tanizaki H. et al. Activated regulatory T-cells are the major T-cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 2010, v. 120, p. 883-893.
  63. Moingeon P., Mascarell L. Novel routes for allergen immunotherapy: safety, efficacy and mode of action. Immunotherapy. 2012, v. 4, p. 201-212.
  64. Li W., Zhang Z., Saxon A., Zhang K. Prevention of oral food allergy sensitization via skin application of food allergen in a mouse model. Allergy. 2012, v. 67, p. 622-629.
  65. Dioszeghy V., Mondoulet L., Dhelft V. et al. Epicutaneous immunotherapy results in rapid allergen uptake by dendritic cells through intact skin and downregulates the allergen-specific response in sensitized mice. J. Immunol. 2011, v. 186, p. 5629-5637.
  66. Lack G., Fox D., Northstone K., Golding J. Factors associated with the development of peanut allergy in childhood. N. Engl. J. Med. 2003, v. 248, p. 977-985.
  67. Japanese Society of Allergology Meeting Report of the Special Committee for the Safety of Protein Hydrolysates in Cosmetics: 6th meeting (Oct. 8, 2012). Available at: http://www. jsaweb.jp/modules/en/index.php?content_id=11.
  68. Mondoulet L., Dioszeghy V., Puteaux E. et al. Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clin. Transl. Allergy. 2012, v. 2, p. 22-35.
  69. Wetzig H., Schulz R., Diez U. et al. Associations between duration ofbreastfeeding, sensitization to hen’s eggs and eczema infantum in one and two year old children at high risk of atopy. Int. J. Hyg. Environ. Health. 2000, v. 203, p. 17-21.
  70. Lai C.C., Yan D.C., Yu J. et al. Latex allergy in hospital employees. J. Formos. Med. Assoc. 1997, v. 96, p. 266-271.
  71. Noh G., Jang E.H. Dual specific oral tolerance induction using interferon gamma for IgE-mediated anaphylactic food allergy and the dissociation of local skin allergy and systemic oral allergy: tolerance or desensitization? J. Investig. Allergol. Clin. Immunol. 2014, v. 24, p. 87-97.
  72. Berni Canani R., Gilbert J.A., Nagler C.R. The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Curr. Opin. Allergy Clin. Immunol. 2015, v. 15, p. 243-249.
  73. Du Toit G., Katz Y., Sasieni P. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 2008, v. 122, p. 984-991.
  74. Greer F.R., Sicherer S.H., Burks A.W. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolysed formulas. Pediatrics. 2008, v. 121, p. 183-191.
  75. Kramer M.S., Kakuma R. Maternal dietary antigen avoidance during pregnancy of lactation, of both, for preventing or treating atopic disease in the child. Cochrane Database Syst. Rev. 2012; 9: CD000133.
  76. Lack G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008, v. 121, p. 1331-1336.
  77. Brown S.J., Asai Y., Cordell H.J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 2011, v. 127, p. 661-667.
  78. Gustaffson D., Sjoberg O., Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis - a prospective follow-up to 7 years of age. Allergy. 2000, v. 55, p. 240-245.
  79. Hopper J.L., Bui Q.M., Erbas B. et al. Does eczema in infancy cause hay fever, asthma, or both in childhood? Insights from a novel regression model of sibling data. J. Allergy Clin. Immunol. 2012, v. 130, p. 1117-1122.
  80. Matsumoto K., Shimanouchi Y., Kawakubo K. et al. Infantile eczema at one month of age is associated with cord blood eosinophilia and subsequent development of atopic dermatitis and wheezing illness until two years of age. Int. Asch. Allergy Immunol. 2005, v. 137, p. 69-76.
  81. Matsumoto K., Saito H. Epicutaneous immunity and onset of allergic diseases - per-«eczematous» sensitization drives the allergic march. Allergol. Int. 2013, v. 62, p. 291-296.
  82. Boralevi F., Hubiche T., Leaute-Labreze C. et al. Epicutaneous aeroallergen sensitization in atopic dermatitis infants - determining the role of epidermal barrier repairmen. Allergy. 2008, v. 63, p. 205-210.
  83. Мигачева Н.Б. Спектр сенсибилизации у детей раннего возраста с атопическим дерматитом и характер его взаимосвязи со степенью тяжести заболевания. Аспирантский вестник Поволжья. 2014, № 1-2, с. 118-122.
  84. Lowe A.J., Abramson M.J., Hosking C.S. et al. The temporal sequence of allergic sensitization and onset of infantile eczema. Clin. Exp. Allergy. 2007, v. 37, p. 536-542.

Copyright © Pharmarus Print Media, 2015

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies