AIRBORNE PARTICULATE MATTER AS DRIVERS OF AIRWAY INFLAMMATION IN T2-ENDOTYPE ASTHMA
- Authors: Khakimova M.R.1, Skorokhodkina O.V.2
-
Affiliations:
- Kazan State Medial University
- Казанский государственный медицинский университет
- Section: Reviews
- Submitted: 02.08.2025
- Accepted: 29.09.2025
- Published: 03.10.2025
- URL: https://rusalljournal.ru/raj/article/view/17046
- DOI: https://doi.org/10.36691/RJA17046
- ID: 17046
Cite item
Abstract
The paper presents the modern concept of airway inflammation formation in T2 endotype asthma under the exposure to ambient air particulate matter (PM). It was shown that PM exposure leads to disruption of the epithelial barrier integrity and epithelial cells damage, triggering the alarmins production with subsequent activation of dendritic cells, Th2 lymphocytes, and/or type 2 innate lymphoid cells. The role of PM in eosinophilic inflammation in both allergic and non-allergic asthma phenotypes was highlighted. Moreover, evidence suggests that PM may modify the structure and activity of certain aeroallergens. Furthermore, a correlation was demonstrated between PM concentrations and asthma incidence. Prenatal PM exposure leads to increased risk for childhood asthma. An association was found between PM concentration and disease progression, exacerbation frequency, and emergency care visits.
The results of experimental, epidemiological, and clinical data show the significant role of PM in driving airway inflammation in the T2-endotype asthma. This highlights the need for further research to develop preventive strategies and novel therapeutic approaches.
Full Text

About the authors
Milyausha R. Khakimova
Kazan State Medial University
Author for correspondence.
Email: mileushe7@gmail.com
Россия
Olesya V. Skorokhodkina
Казанский государственный медицинский университет
Email: olesya-27@rambler.ru
References
- REFERENCES:
- Pat Y, Yazici D, D’Avino P, Li M, Ardicli S, Ardicli O, et al. Recent advances in the epithelial barrier theory. Int Immunol. 2024;36(5):211-222. doi: 10.1093/intimm/dxae002.
- World Health Organization. The Global Health Observatory [Internet]. WHO. [cited 27 July 2025]. Available from: https://www.who.int/data/gho/data/themes/air-pollution.
- Diao P, He H, Tang J, Xiong L, Li L. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed Pharmacother. 2021;138:111534. doi: 10.1016/j.biopha.2021.111534.
- Wang X, Dickinson RE, Su L, Zhou C, Wang K. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull Am Meteorol Soc. 2018;99(1):105-119. doi: 10.1175/BAMS-D-16-0301.1.
- Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci. 2020;284:102244. doi: 10.1016/j.cis.2020.102244.
- Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S. Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci. 2020;3(1):23. doi: 10.1038/s41612-020-0124-2.
- Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, et al. Impact of air pollution on asthma: A scoping review. Open Respir Arch. 2023;5(2):100229. doi: 10.1016/j.opresp.2022.100229.
- Guo H, Chen M. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol Environ Saf. 2018;161:184-189. doi: 10.1016/j.ecoenv.2018.05.089.
- Ministry of Health of the Russian Federation. Clinical guidelines: Bronchial asthma, 2025 [Internet]. [cited 27 July 2025]. Available from: https://cr.minzdrav.gov.ru/preview-cr/359_3. (in Russ.)
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention [Internet]. [cited 27 July 2025]. Available from: https://ginasthma.org/.
- Nenasheva NM. T2-bronchial asthma: Characteristics of the endotype and biomarkers. Russ Pulmonol. 2019;29(2):216-228. (in Russ.). doi: 10.18093/0869-0189-2019-29-2-216-228.
- Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29-40. doi: 10.1016/j.immuni.2015.07.007.
- Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605. doi: 10.1111/all.14318.
- Pelaia C, Crimi C, Vatrella A, et al. Molecular targets for biological therapies of severe asthma. Front Immunol. 2020;11:603312. doi: 10.3389/fimmu.2020.603312.
- Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. Clin Respir J. 2021;15(10):1027-1045. doi: 10.1111/crj.13407.
- Dyneva ME, Aminova GE, Kurbacheva OM, Ilina NI. Dupilumab: New opportunities in the treatment of bronchial asthma and polypoid rhinosinusitis. Russ Allergol J. 2021;18(1):18-31. (in Russ.). doi: 10.36691/RJA1408.
- Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45-56. doi: 10.1038/ni.3049.
- Piao CH, Fan Y, Nguyen TV, et al. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 2023;119:110254. doi: 10.1016/j.intimp.2023.110254.
- World Health Organization Regional Office for Europe. Health effects of particulate matter: Policy implications for countries in Eastern Europe, Caucasus and Central Asia [Internet]. 2013. [cited 27 July 2025]. Available from: https://iris.who.int/bitstream/handle/10665/344855/9789289000062-rus.pdf.
- Zhang L, Ou C, Magana-Arachchi D, et al. Indoor particulate matter in urban households: Sources, pathways, characteristics, health effects, and exposure mitigation. Int J Environ Res Public Health. 2021;18(21):11055. doi: 10.3390/ijerph182111055.
- Chomaeva MN. Industrial dust as a harmful occupational factor. Natl Secur Strateg Plan. 2015;10(2-1):119-122. (in Russ.)
- Arias-Pérez RD, Taborda NA, Gómez DM, et al. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res. 2020;27(34):42390-42404. doi: 10.1007/s11356-020-10574-w.
- Baldacci S, Maio S, Cerrai S, et al. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir Med. 2015;109(9):1089-1104. doi: 10.1016/j.rmed.2015.05.017.
- Revich BA. Fine suspended particulates in ambient air and their health effects in megalopolises. Probl Ecol Monit Ecosyst Model. 2018;29(3):53-78. (in Russ.)
- Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311-317. doi: 10.1038/s12276-020-0403-3.
- Chen C, Liu S, Dong W, et al. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Sci Total Environ. 2021;751:141726. doi: 10.1016/j.scitotenv.2020.141726.
- Hameed S, Pan K, Su W, et al. Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Part Fibre Toxicol. 2022;19(1):51. doi: 10.1186/s12989-022-00493-8.
- Wang L, Luo D, Liu X, et al. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 2021;264:128436. doi: 10.1016/j.chemosphere.2020.128436.
- Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol. 2022;19(1):67. doi: 10.1186/s12989-022-00507-5.
- Wei H, Feng Y, Liang F, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology. 2017;380:94-103. doi: 10.1016/j.tox.2017.01.017.
- Anenberg SC, Henze DK, Tinney V, et al. Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environ Health Perspect. 2018;126(10):107004. doi: 10.1289/EHP3766.
- Motta AC, Marliere M, Peltre G, et al. Traffic-Related Air Pollutants Induce the Release of Allergen-Containing Cytoplasmic Granules from Grass Pollen. Int Arch Allergy Immunol. 2006;139(4):294-298. doi: 10.1159/000091600.
- Sedghy F, Varasteh AR, Sankian M, Moghadam M. Interaction Between Air Pollutants and Pollen Grains: The Role on the Rising Trend in Allergy. Rep Biochem Mol Biol. 2018;6(2):219-224.
- Cakmak S, Dales RE, Coates F. Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol. 2012;129(1):228-231. doi: 10.1016/j.jaci.2011.09.025.
- He M, Ichinose T, Ren Y, et al. PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhal Toxicol. 2015;27(6):287-299. doi: 10.3109/08958378.2015.1045051.
- World Health Organization. WHO Global Ambient Air Quality Database (Update 2018) [Internet]. [cited 27 July 2025].Available from: http://www.who.int/airpollution/data/cities/en/.
- SanPiN 1.2.3685-21 [Internet]. [cited 27 July 2025]. Available from: https://www.rospotrebnadzor.ru/files/news/GN_sreda%20_obitaniya_compressed.pdf. (in Russ.)
- IQAir [Internet]. [cited 5 June 2025].Available from: https://www.iqair.com/ru/.
- Galitskaya MA, Kurbacheva OM. Modern concepts of the role of innate and acquired immunity in bronchial asthma. Russ Allergol J. 2018;15(6):7-17. doi: 10.36691/RJA87.
- Dornhof R, Maschowski C, Osipova A, et al. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS One. 2017;12(7):e0180291. doi: 10.1371/journal.pone.0180291.
- Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses. Am J Transplant. 2017;17(2):320-327. doi: 10.1111/ajt.13887.
- Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol. 2021;148(1):40-52. doi: 10.1016/j.jaci.2020.12.628.
- Fort MM, Cheung J, Yen D, et al. IL-25 Induces IL-4, IL-5, and IL-13 and Th2-Associated Pathologies In Vivo. Immunity. 2001;15(6):985-995. doi: 10.1016/S1074-7613(01)00243-6.
- Xu M, Dong C. IL-25 in allergic inflammation. Immunol Rev. 2017;278(1):185-191. doi: 10.1111/imr.12558.
- Yao XJ, Liu XF, Wang XD. Potential Role of Interleukin-25/Interleukin-33/Thymic Stromal Lymphopoietin-Fibrocyte Axis in the Pathogenesis of Allergic Airway Diseases. Chin Med J (Engl). 2018;131(16):1983-1989. doi: 10.4103/0366-6999.238150.
- Whetstone CE, Ranjbar M, Omer H, et al. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells. 2022;11(7):1105. doi: 10.3390/cells11071105.
- Tamachi T, Maezawa Y, Ikeda K, et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol. 2006;118(3):606-614. doi: 10.1016/j.jaci.2006.04.051.
- Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells. 2021;11(1):107. doi: 10.3390/cells11010107.
- Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front Immunol. 2019;10:364. doi: 10.3389/fimmu.2019.00364.
- Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine. 2022;156:155891. doi: 10.1016/j.cyto.2022.155891.
- Xu M, Shao M, Chen Y, Liu C. Early life exposure to particulate matter and childhood asthma in Beijing, China: a case-control study. Int J Environ Health Res. 2024;34(1):526-534. doi: 10.1080/09603123.2022.2154327.
- Ke X, Liu S, Wang X, et al. Association of exposure to ambient particulate matter with asthma in children: Systematic review and meta-analysis. Allergy Asthma Proc. 2025;46(2):e43-e60. doi: 10.2500/aap.2025.46.240115.
- Gehring U, Wijga AH, Koppelman GH, et al. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J. 2020;56(1):2000147. doi: 10.1183/13993003.00147-2020.
- To T, Zhu J, Stieb D, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J. 2020;55(2):1900913. doi: 10.1183/13993003.00913-2019.
- Agache I, Annesi-Maesano I, Cecchi L, et al. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy. 2024;79(7):1656-1686. doi: 10.1111/all.16103.
- Romieu I, Meneses F, Ruiz S, et al. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Respir Crit Care Med. 1996;154(2):300-307. doi: 10.1164/ajrccm.154.2.8756798.
- Fan J, Li S, Fan C, Bai Z, Yang K. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res. 2016;23(1):843-850.
- Zhao N, Liu Y, Vanos JK, Cao G. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure. Atmos Environ. 2018;192:116-127. doi: 10.1016/j.atmosenv.2018.08.050.
- Dixon PG, Allen M, Gosling SN, et al. Perspectives on the Synoptic Climate Classification and its Role in Interdisciplinary Research. Geogr Compass. 2016;10(4):147-164. doi: 10.1111/gec3.12264.
- Greene JS, Kalkstein LS, Ye H, Smoyer K. Relationships between Synoptic Climatology and Atmospheric Pollution at 4 US Cities. Theor Appl Climatol. 1999;62(3-4):163-174. doi: 10.1007/s007040050081.
- Wang J, Ogawa S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int J Environ Res Public Health. 2015;12(8):9089-9101. doi: 10.3390/ijerph120809089.
- Li Y, Wang W, Kan H, Xu X, Chen B. Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. Sci Total Environ. 2010;408(5):1226-1227. doi: 10.1016/j.scitotenv.2009.11.035.
Supplementary files
