Evaluation of the concentration dynamics of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in blood serum as predictive biomarkers of the allergen immunotherapy efficacy



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The only pathogenetic method for treatment of respiratory allergic diseases is allergen immunotherapy. Despite the fact that this method has been used for over a hundred years, its exact mechanisms continue to be studied, and predictive biomarkers that could optimize the selection of patients for therapy are lacking.

AIM: To assess the clinical significance of changes in the levels of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in blood serum as predictive biomarkers of the allergen immunotherapy efficacy in patients with respiratory allergies.

MATERIALS AND METHODS: A prospective, single-center study included patients with allergic rhinitis with/without asthma caused by sensitization to allergens of house dust mite and healthy volunteers. Patients in the treatment group received therapy with sublingual allergens of house dust mite for six months; the severity of clinical symptoms was assessed at control visits (before, after 2 and 6 months of therapy). Biomaterial was collected once from healthy volunteers and at every control visit from the patients of the treatment group to assess the concentrations of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in serum using the enzyme-linked immunosorbent assay.

RESULTS: Both treatment and control groups included 10 adult volunteers, matched for age, gender, and baseline cytokine levels (p >0.05). The treatment group had a higher baseline level of allergen-specific secretory immunoglobulin A in saliva (p <0.001). All patients achieved clinical improvement after 6 months of therapy in relation to allergic rhinitis symptoms, patients with asthma achieved improvement after 2 months, this improvement was sustained throughout the observation period. Evaluation of biomarker changes showed a significant increase in the level of allergen-specific secretory immunoglobulin A in saliva by the 2nd month of treatment (p = 0.006), an increase in the concentration of interferon γ in the serum by the 6th month (p = 0.002). The concentration of interleukin 4 in the serum increased by the 2nd (p = 0.002) and decreased by the 6th (p = 0.002) month. The change in the concentration of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 in serum did not correlate with the therapy efficacy, the change in the concentration of interferon γ correlated with the therapy efficacy after 6 months of therapy in relation to symptoms of allergic rhinitis (rs = −0.782; p = 0.012) and asthma (rs = 0.943; p = 0.017).

CONCLUSION: The obtained results indicate that changes in the levels of Th1- and Th2-cytokines in the blood serum, induction of the synthesis of allergen-specific secretory immunoglobulin A in the oral cavity participate in the mechanisms of the sublingual allergen immunotherapy effect. The data of the correlation analysis, assessed at a two-month and six-month interval during allergen immunotherapy, allow us to identify changes in the concentration of interferon γ in the serum as potential predictive biomarker of allergen immunotherapy efficacy.

Full Text

Restricted Access

About the authors

Daria O. Timoshenko

National Research Center — Institute of Immunology Federal Medical-Biological Agency

Author for correspondence.
Email: d.o.timoshenko@gmail.com
ORCID iD: 0000-0002-7585-1390
SPIN-code: 2714-0906

MD

Россия, Moscow

Oksana M. Kurbacheva

National Research Center — Institute of Immunology Federal Medical-Biological Agency; Russian University of Medicine

Email: kurbacheva@gmail.com
ORCID iD: 0000-0003-3250-0694
SPIN-code: 5698-6436

MD, Dr. Sci. (Medicine), Professor

Россия, Moscow; Moscow

Igor V. Andreev

National Research Center — Institute of Immunology Federal Medical-Biological Agency

Email: iva66@list.ru
ORCID iD: 0000-0001-6162-6726
SPIN-code: 8072-9669

MD, Cand. Sci. (Medicine)

Россия, Moscow

Aleksandr I. Andreev

National Research Center — Institute of Immunology Federal Medical-Biological Agency

Email: cahek_ahdreeb@mail.ru
ORCID iD: 0000-0002-6257-6289
SPIN-code: 7126-4748
Россия, Moscow

Ksenya O. Nechay

Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies

Email: xenya.ne4ay2016@yandex.ru
ORCID iD: 0000-0001-6052-9721
SPIN-code: 7206-6660
Россия, Moscow

Mariya V. Khodzhava

National Research Center — Institute of Immunology Federal Medical-Biological Agency

Email: educate.lec@gmail.com
ORCID iD: 0009-0005-5140-1554
SPIN-code: 3046-8033

Cand. Sci. (Pharmacy)

Россия, Moscow

Аleksandr I. Martynov

National Research Center — Institute of Immunology Federal Medical-Biological Agency

Email: immune48@mail.ru
ORCID iD: 0000-0001-9761-8058
SPIN-code: 5829-5580

MD, Cand. Sci. (Medicine)

Россия, Moscow

Natalya I. Ilyina

National Research Center — Institute of Immunology Federal Medical-Biological Agency; The Russian National Research Medical University named after N.I. Pirogov

Email: instimmun@yandex.ru
ORCID iD: 0000-0002-3556-969X
SPIN-code: 6715-5650

MD, Dr. Sci. (Medicine), Professor

Россия, Moscow; Moscow

Musa R. Khaitov

National Research Center — Institute of Immunology Federal Medical-Biological Agency; The Russian National Research Medical University named after N.I. Pirogov

Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803

MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences

Россия, Moscow; Moscow

References

  1. Российская ассоциация аллергологов и клинических иммунологов, Национальная медицинская ассоциация оториноларингологов, Союз педиатров России. Федеральные клинические рекомендации по диагностике и лечению аллергического ринита. 2022.
  2. Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. М.: Фармус Принт Медиа, 2010.
  3. Российское респираторное общество, Российская ассоциация аллергологов и клинических иммунологов, Союз педиатров России. Федеральные клинические рекомендации по диагностике и лечению бронхиальной астмы. 2024.
  4. Linneberg A, Henrik Nielsen N, Frølund L, et al. The link between allergic rhinitis and allergic asthma: a prospective population-based study. The Copenhagen Allergy Study. Allergy. 2002;57(11):1048–1052. doi: 10.1034/j.1398-9995.2002.23664.x EDN: BESRHR
  5. Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: house dust mite-driven allergic asthma. Allergy. 2019;74(5):855–873. doi: 10.1111/all.13749 EDN: JFOYQP
  6. Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по проведению аллерген-специфической иммунотерапии. 2013.
  7. Pavlova KS, Timoshenko DO, Gushchin IS, Kurbacheva OM. Allergen immunotherapy: on the path to achieving immune tolerance. Immunologiya. 2024;45(1):82–90. (In Russ.) doi: 10.33029/1816-2134-2024- 45-1-82-90 EDN: EGMDEG
  8. Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy. 2017;72(8):1156–1173. doi: 10.1111/all.13138 EDN: YEVYBI
  9. Timoshenko DO, Pavlova KS, Kurbacheva OM. Searching for predictive biomarkers of allergen-specific immunotherapy efficacy based on modern concepts of its mechanisms. Russian Journal of Allergy. 2023;20(2):187–200. (In Russ.) doi: 10.36691/RJA7526 EDN: MGNRTD
  10. Van de Veen W, Akdis M. Tolerance mechanisms of allergen immunotherapy. Allergy. 2020;75(5):1017–1018. doi: 10.1111/all.14126 EDN: FPAJHL
  11. Jutel M, Akdis M, Budak F, et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol. 2003;33(5):1205–1214. doi: 10.1002/eji.200322919
  12. Faith A, Richards D, Verhoef A, et al. Impaired secretion of interleukin-4 and interleukin-13 by allergen-specific T cells correlates with defective nuclear expression of NF-AT2 and jun B: relevance to immunotherapy. Clin Exp Allergy. 2003;33(9):1209–1215. doi: 10.1046/j.1365-2222.2003.01748.x EDN: ETVKNP
  13. Ebner C, Siemann U, Bohle B, et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy. 1997;27(9):1007–1015. doi: 10.1111/j.1365-2222.1997.tb01252.x
  14. Fanta C, Bohle B, Hirt W, et al. Systemic immunological changes induced by administration of grass pollen allergens via the oral mucosa during sublingual immunotherapy. Int Arch Allergy Immunol. 1999;120(3):218–224. doi: 10.1159/000024270
  15. Cosmi L, Santarlasci V, Angeli R, et al. Sublingual immunotherapy with Dermatophagoides monomeric allergoid down-regulates allergen-specific immunoglobulin E and increases both interferon-gamma- and interleukin-10-production. Clin Exp Allergy. 2006;36(3):261–272. doi: 10.1111/j.1365-2222.2006.02429.x
  16. Bohle B, Kinaciyan T, Gerstmayr M, et al. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol. 2007;120(3):707–713. doi: 10.1016/j.jaci.2007.06.013
  17. Wachholz PA, Nouri-Aria KT, Wilson DR, et al. Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1:Th2 cytokine ratios. Immunology. 2002;105(1):56–62. doi: 10.1046/j.1365-2567.2002.01338.x EDN: BALLAB
  18. Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111(6):1255–1261. doi: 10.1067/mai.2003.1570
  19. Liu J, Hu M, Tao X, et al. Salivary IgG4 levels contribute to assessing the efficacy of Dermatophagoides pteronyssinus subcutaneous immunotherapy in children with asthma or allergic rhinitis. J Clin Med. 2023;12(4):1665. doi: 10.3390/jcm12041665 EDN: DBZSTK
  20. Scadding G, Calderon M, Shamji M, et al. Effect of 2 years of treatment with sublingual grass pollen immunotherapy on nasal response to allergen challenge at 3 years among patients with moderate to severe seasonal allergic rhinitis: The GRASS Randomized Clinical Trial. JAMA. 2017;317(6):615–625. doi: 10.1001/jama.2016.21040 EDN: YWZZCL
  21. Shamji MH, Kappen J, Abubakar-Waziri H, et al. Nasal allergen-neutralizing IgG 4 antibodies block IgE-mediated responses: novel biomarker of subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2019;143(3):1067–1076. doi: 10.1016/j.jaci.2018.09.039
  22. Shamji MH, Larson D, Eifan A, et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol. 2021;148(4):1061–1071.e11. doi: 10.1016/j.jaci.2021.03.030 EDN: LXJXMZ
  23. Virchow JC, Backer V, Kuna P, et al. Efficacy of a house dust mite sublingual allergen immunotherapy tablet in adults with allergic asthma: a randomized clinical trial. JAMA. 2016;315(16):1715–1725. doi: 10.1001/jama.2016.3964 EDN: YCQFSX
  24. Mosbech H, Deckelmann R, de Blay F, et al. Standardized quality (SQ) house dust mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while maintaining asthma control: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2014;134(3):568–575.e7. doi: 10.1016/j.jaci.2014.03.019 EDN: UQGYIP
  25. Okubo K, Masuyama K, Imai T, et al. Efficacy and safety of the SQ house dust mite sublingual immunotherapy tablet in Japanese adults and adolescents with house dust mite-induced allergic rhinitis. J Allergy Clin Immunol. 2017;139(6):1840–1848.e10. doi: 10.1016/j.jaci.2016.09.043
  26. Timoshenko DO, Pavlova KS, Kurbacheva OM. Allergen-specific immunotherapy and real-world evidence. Russian Journal of Allergy. 2022;19(2):190–200. (In Russ.) doi: 10.36691/RJA1535 EDN: AWUMWE
  27. López J, imam M, Satitsuksanoa P, et al. Mechanisms and biomarkers of successful allergen-specific immunotherapy. Asia Pac Allergy. 2022;12(4): doi: 10.5415/apallergy.2022.12.e45 EDN: RXEKCE
  28. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485–1498. doi: 10.1016/j.jaci.2017.10.010
  29. Shamji MH, Valenta R, Jardetzky T, et al. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021;76(12):3627–3641. doi: 10.1111/all.14908 EDN: RLOASH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study design. Note. SLIT — sublingual immunotherapy, HDM — house dust mites, IL — interleukin, IFN — interferon, sIg — secretory immunoglobulin.

Download (650KB)
3. Fig. 2. Changes in concentrations of allergen-specific secretory immunoglobulin A (sIgA) during allergen-specific immunotherapy (AIT): a — statistically significant increase in sIgA concentration in saliva by the second month of therapy (p = 0.006); b — statistically significant increase in sIgA concentration in saliva by the sixth month of therapy in relation to base level (p = 0.006); с — statistically significant decrease in sIgA concentration in saliva by the sixth month of therapy relative to the concentration after 2 months of treatment (p = 0.006). Note. CI — confidence interval; V0 — before therapy; V1 — after 8 weeks of therapy; V2 — after 24 weeks of therapy.

Download (348KB)
4. Fig. 3. Changes in interleukin (IL) 4 cytokine concentrations during allergen-specific immunotherapy: a — statistically significant increase in IL-4 concentration by the second month of therapy (p = 0.002); b — statistically significant decrease in IL-4 concentration by the sixth month of therapy relative to the concentration after 2 months of therapy (p = 0.002). Note. CI — confidence interval; V0 — before therapy; V1 — after 8 weeks of therapy; V2 — after 24 weeks of therapy.

Download (220KB)
5. Fig. 4. Changes in interferon (IFN) γ concentrations during allergen-specific immunotherapy: a — no statistically significant difference in IFN γ concentrations at baseline and after 2 months of therapy (p = 0.107); b — statistically significant increase in IFN γ concentration by the sixth month of therapy relative to the baseline level (p = 0.002). Note. CI — confidence interval; V0 — before therapy; V1 — after 8 weeks of therapy; V2 — after 24 weeks of therapy.

Download (217KB)

Copyright © ABV-press,



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies