Evaluation of the concentration dynamics of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in blood serum as predictive biomarkers of the allergen immunotherapy efficacy
- Authors: Timoshenko D.O.1, Kurbacheva O.M.1,2, Andreev I.V.1, Andreev A.I.1, Nechay K.O.3, Khodzhava M.V.1, Martynov А.I.1, Ilyina N.I.1,4, Khaitov M.R.1,4
-
Affiliations:
- National Research Center — Institute of Immunology Federal Medical-Biological Agency
- Russian University of Medicine
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies
- The Russian National Research Medical University named after N.I. Pirogov
- Pages: 248-266
- Section: Original studies
- Submitted: 16.06.2025
- Accepted: 19.08.2025
- Published: 22.08.2025
- URL: https://rusalljournal.ru/raj/article/view/17031
- DOI: https://doi.org/10.36691/RJA17031
- ID: 17031
Cite item
Abstract
BACKGROUND: The only pathogenetic method for treatment of respiratory allergic diseases is allergen immunotherapy. Despite the fact that this method has been used for over a hundred years, its exact mechanisms continue to be studied, and predictive biomarkers that could optimize the selection of patients for therapy are lacking.
AIM: To assess the clinical significance of changes in the levels of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in blood serum as predictive biomarkers of the allergen immunotherapy efficacy in patients with respiratory allergies.
MATERIALS AND METHODS: A prospective, single-center study included patients with allergic rhinitis with/without asthma caused by sensitization to allergens of house dust mite and healthy volunteers. Patients in the treatment group received therapy with sublingual allergens of house dust mite for six months; the severity of clinical symptoms was assessed at control visits (before, after 2 and 6 months of therapy). Biomaterial was collected once from healthy volunteers and at every control visit from the patients of the treatment group to assess the concentrations of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 and interferon γ in serum using the enzyme-linked immunosorbent assay.
RESULTS: Both treatment and control groups included 10 adult volunteers, matched for age, gender, and baseline cytokine levels (p >0.05). The treatment group had a higher baseline level of allergen-specific secretory immunoglobulin A in saliva (p <0.001). All patients achieved clinical improvement after 6 months of therapy in relation to allergic rhinitis symptoms, patients with asthma achieved improvement after 2 months, this improvement was sustained throughout the observation period. Evaluation of biomarker changes showed a significant increase in the level of allergen-specific secretory immunoglobulin A in saliva by the 2nd month of treatment (p = 0.006), an increase in the concentration of interferon γ in the serum by the 6th month (p = 0.002). The concentration of interleukin 4 in the serum increased by the 2nd (p = 0.002) and decreased by the 6th (p = 0.002) month. The change in the concentration of allergen-specific secretory immunoglobulin A in saliva, interleukin 4 in serum did not correlate with the therapy efficacy, the change in the concentration of interferon γ correlated with the therapy efficacy after 6 months of therapy in relation to symptoms of allergic rhinitis (rs = −0.782; p = 0.012) and asthma (rs = 0.943; p = 0.017).
CONCLUSION: The obtained results indicate that changes in the levels of Th1- and Th2-cytokines in the blood serum, induction of the synthesis of allergen-specific secretory immunoglobulin A in the oral cavity participate in the mechanisms of the sublingual allergen immunotherapy effect. The data of the correlation analysis, assessed at a two-month and six-month interval during allergen immunotherapy, allow us to identify changes in the concentration of interferon γ in the serum as potential predictive biomarker of allergen immunotherapy efficacy.
Full Text

About the authors
Daria O. Timoshenko
National Research Center — Institute of Immunology Federal Medical-Biological Agency
Author for correspondence.
Email: d.o.timoshenko@gmail.com
ORCID iD: 0000-0002-7585-1390
SPIN-code: 2714-0906
MD
Россия, MoscowOksana M. Kurbacheva
National Research Center — Institute of Immunology Federal Medical-Biological Agency; Russian University of Medicine
Email: kurbacheva@gmail.com
ORCID iD: 0000-0003-3250-0694
SPIN-code: 5698-6436
MD, Dr. Sci. (Medicine), Professor
Россия, Moscow; MoscowIgor V. Andreev
National Research Center — Institute of Immunology Federal Medical-Biological Agency
Email: iva66@list.ru
ORCID iD: 0000-0001-6162-6726
SPIN-code: 8072-9669
MD, Cand. Sci. (Medicine)
Россия, MoscowAleksandr I. Andreev
National Research Center — Institute of Immunology Federal Medical-Biological Agency
Email: cahek_ahdreeb@mail.ru
ORCID iD: 0000-0002-6257-6289
SPIN-code: 7126-4748
Россия, Moscow
Ksenya O. Nechay
Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies
Email: xenya.ne4ay2016@yandex.ru
ORCID iD: 0000-0001-6052-9721
SPIN-code: 7206-6660
Россия, Moscow
Mariya V. Khodzhava
National Research Center — Institute of Immunology Federal Medical-Biological Agency
Email: educate.lec@gmail.com
ORCID iD: 0009-0005-5140-1554
SPIN-code: 3046-8033
Cand. Sci. (Pharmacy)
Россия, MoscowАleksandr I. Martynov
National Research Center — Institute of Immunology Federal Medical-Biological Agency
Email: immune48@mail.ru
ORCID iD: 0000-0001-9761-8058
SPIN-code: 5829-5580
MD, Cand. Sci. (Medicine)
Россия, MoscowNatalya I. Ilyina
National Research Center — Institute of Immunology Federal Medical-Biological Agency; The Russian National Research Medical University named after N.I. Pirogov
Email: instimmun@yandex.ru
ORCID iD: 0000-0002-3556-969X
SPIN-code: 6715-5650
MD, Dr. Sci. (Medicine), Professor
Россия, Moscow; MoscowMusa R. Khaitov
National Research Center — Institute of Immunology Federal Medical-Biological Agency; The Russian National Research Medical University named after N.I. Pirogov
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803
MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences
Россия, Moscow; MoscowReferences
- Российская ассоциация аллергологов и клинических иммунологов, Национальная медицинская ассоциация оториноларингологов, Союз педиатров России. Федеральные клинические рекомендации по диагностике и лечению аллергического ринита. 2022.
- Гущин И.С., Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. М.: Фармус Принт Медиа, 2010.
- Российское респираторное общество, Российская ассоциация аллергологов и клинических иммунологов, Союз педиатров России. Федеральные клинические рекомендации по диагностике и лечению бронхиальной астмы. 2024.
- Linneberg A, Henrik Nielsen N, Frølund L, et al. The link between allergic rhinitis and allergic asthma: a prospective population-based study. The Copenhagen Allergy Study. Allergy. 2002;57(11):1048–1052. doi: 10.1034/j.1398-9995.2002.23664.x EDN: BESRHR
- Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: house dust mite-driven allergic asthma. Allergy. 2019;74(5):855–873. doi: 10.1111/all.13749 EDN: JFOYQP
- Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по проведению аллерген-специфической иммунотерапии. 2013.
- Pavlova KS, Timoshenko DO, Gushchin IS, Kurbacheva OM. Allergen immunotherapy: on the path to achieving immune tolerance. Immunologiya. 2024;45(1):82–90. (In Russ.) doi: 10.33029/1816-2134-2024- 45-1-82-90 EDN: EGMDEG
- Shamji MH, Kappen JH, Akdis M, et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy. 2017;72(8):1156–1173. doi: 10.1111/all.13138 EDN: YEVYBI
- Timoshenko DO, Pavlova KS, Kurbacheva OM. Searching for predictive biomarkers of allergen-specific immunotherapy efficacy based on modern concepts of its mechanisms. Russian Journal of Allergy. 2023;20(2):187–200. (In Russ.) doi: 10.36691/RJA7526 EDN: MGNRTD
- Van de Veen W, Akdis M. Tolerance mechanisms of allergen immunotherapy. Allergy. 2020;75(5):1017–1018. doi: 10.1111/all.14126 EDN: FPAJHL
- Jutel M, Akdis M, Budak F, et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol. 2003;33(5):1205–1214. doi: 10.1002/eji.200322919
- Faith A, Richards D, Verhoef A, et al. Impaired secretion of interleukin-4 and interleukin-13 by allergen-specific T cells correlates with defective nuclear expression of NF-AT2 and jun B: relevance to immunotherapy. Clin Exp Allergy. 2003;33(9):1209–1215. doi: 10.1046/j.1365-2222.2003.01748.x EDN: ETVKNP
- Ebner C, Siemann U, Bohle B, et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy. 1997;27(9):1007–1015. doi: 10.1111/j.1365-2222.1997.tb01252.x
- Fanta C, Bohle B, Hirt W, et al. Systemic immunological changes induced by administration of grass pollen allergens via the oral mucosa during sublingual immunotherapy. Int Arch Allergy Immunol. 1999;120(3):218–224. doi: 10.1159/000024270
- Cosmi L, Santarlasci V, Angeli R, et al. Sublingual immunotherapy with Dermatophagoides monomeric allergoid down-regulates allergen-specific immunoglobulin E and increases both interferon-gamma- and interleukin-10-production. Clin Exp Allergy. 2006;36(3):261–272. doi: 10.1111/j.1365-2222.2006.02429.x
- Bohle B, Kinaciyan T, Gerstmayr M, et al. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol. 2007;120(3):707–713. doi: 10.1016/j.jaci.2007.06.013
- Wachholz PA, Nouri-Aria KT, Wilson DR, et al. Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1:Th2 cytokine ratios. Immunology. 2002;105(1):56–62. doi: 10.1046/j.1365-2567.2002.01338.x EDN: BALLAB
- Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111(6):1255–1261. doi: 10.1067/mai.2003.1570
- Liu J, Hu M, Tao X, et al. Salivary IgG4 levels contribute to assessing the efficacy of Dermatophagoides pteronyssinus subcutaneous immunotherapy in children with asthma or allergic rhinitis. J Clin Med. 2023;12(4):1665. doi: 10.3390/jcm12041665 EDN: DBZSTK
- Scadding G, Calderon M, Shamji M, et al. Effect of 2 years of treatment with sublingual grass pollen immunotherapy on nasal response to allergen challenge at 3 years among patients with moderate to severe seasonal allergic rhinitis: The GRASS Randomized Clinical Trial. JAMA. 2017;317(6):615–625. doi: 10.1001/jama.2016.21040 EDN: YWZZCL
- Shamji MH, Kappen J, Abubakar-Waziri H, et al. Nasal allergen-neutralizing IgG 4 antibodies block IgE-mediated responses: novel biomarker of subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2019;143(3):1067–1076. doi: 10.1016/j.jaci.2018.09.039
- Shamji MH, Larson D, Eifan A, et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol. 2021;148(4):1061–1071.e11. doi: 10.1016/j.jaci.2021.03.030 EDN: LXJXMZ
- Virchow JC, Backer V, Kuna P, et al. Efficacy of a house dust mite sublingual allergen immunotherapy tablet in adults with allergic asthma: a randomized clinical trial. JAMA. 2016;315(16):1715–1725. doi: 10.1001/jama.2016.3964 EDN: YCQFSX
- Mosbech H, Deckelmann R, de Blay F, et al. Standardized quality (SQ) house dust mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while maintaining asthma control: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2014;134(3):568–575.e7. doi: 10.1016/j.jaci.2014.03.019 EDN: UQGYIP
- Okubo K, Masuyama K, Imai T, et al. Efficacy and safety of the SQ house dust mite sublingual immunotherapy tablet in Japanese adults and adolescents with house dust mite-induced allergic rhinitis. J Allergy Clin Immunol. 2017;139(6):1840–1848.e10. doi: 10.1016/j.jaci.2016.09.043
- Timoshenko DO, Pavlova KS, Kurbacheva OM. Allergen-specific immunotherapy and real-world evidence. Russian Journal of Allergy. 2022;19(2):190–200. (In Russ.) doi: 10.36691/RJA1535 EDN: AWUMWE
- López J, imam M, Satitsuksanoa P, et al. Mechanisms and biomarkers of successful allergen-specific immunotherapy. Asia Pac Allergy. 2022;12(4): doi: 10.5415/apallergy.2022.12.e45 EDN: RXEKCE
- Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485–1498. doi: 10.1016/j.jaci.2017.10.010
- Shamji MH, Valenta R, Jardetzky T, et al. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021;76(12):3627–3641. doi: 10.1111/all.14908 EDN: RLOASH
Supplementary files
