Cationic peptides as promising compounds for the treatment of bacterial complications in atopic dermatitis: Antibacterial activity assessment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The decrease in the effectiveness of antibiotics against the background of resistance of microorganisms aggravates the therapy of atopic dermatitis complicated by bacterial infection and actualizes the development of new antimicrobial agents.

AIM: To develop, synthesize, and evaluate the antibacterial activity of cationic peptides and an aqueous solution of fullerene C60 to create drugs based on them that will have a spectrum of biological activity, including anti-inflammatory, antiallergic, and antibacterial activities.

MATERIALS AND METHODS: This study analyzed the developed linear and dendrimer cationic peptides, whose structure was confirmed by matrix-assisted laser desorption ionization–time of flight mass spectrometry. An aqueous solution of fullerene C60 was obtained using a uniquely developed and patented technology. Antibacterial activity was assessed by diffusion into agar using disks (screening) and serial dilution, which was used to determine the minimum bactericidal concentration of the studied compounds.

RESULTS: Moreover, 42 cationic peptides with various structures were developed and synthesized. The molecular weight of the peptides did not exceed 5,000 Da. They contained 7–25 amino acids with charges from +5 to +16. Screening was carried out through diffusion into agar using disks and revealed 15 peptides that showed activity against Escherichia coli Dh5a. Thus, using the method of counting colonies, the peptides AB-14, AB-17, and AB-18 showed bactericidal activity relative to E. coli Dh5a in concentrations of 0.03, 0.15, and 0.74 mM, respectively, which exceeded that of ampicillin (0.74 mM) several times. Analysis of an aqueous solution of fullerene C60 did not reveal its antibacterial activity.

CONCLUSIONS: The antibacterial activity of the resulting peptides makes them promising for the development of antibacterial therapeutic agents.

Full Text

Restricted Access

About the authors

Anastasia A. Galkina

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: anastasia.a.galkina@gmail.com
ORCID iD: 0000-0003-4521-0813
SPIN-code: 7329-0197
Russian Federation, Moscow

Darya K. Bolyakina

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: bolyakina.dasha@gmail.com
ORCID iD: 0009-0006-2223-1514
Russian Federation, Moscow

Anastasia V. Shatilova

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: av.timofeeva@nrcii.ru
ORCID iD: 0000-0003-3780-2878
SPIN-code: 1988-1536
Russian Federation, Moscow

Artem A. Shatilov

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: aa.shatilov@nrcii.ru
ORCID iD: 0000-0002-4675-8074
SPIN-code: 6768-5796
Russian Federation, Moscow

Marina O. Babikhina

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: mbabihina@gmail.com
ORCID iD: 0009-0000-5935-1647
SPIN-code: 4621-0268
Russian Federation, Moscow

Alla K. Golomidova

Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences

Email: alla_golomidova@mail.ru
ORCID iD: 0000-0001-9893-0270
SPIN-code: 9954-3759

Cand. Sci. (Biol.)

Russian Federation, Moscow

Alexandra A. Nikonova

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: aa.nikonova@nrcii.ru
ORCID iD: 0000-0001-9610-0935
SPIN-code: 1950-5594

Cand. Sci. (Biol.)

Russian Federation, Moscow

Sergey M. Andreev

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: andsergej@yandex.ru
ORCID iD: 0000-0001-8297-579X
SPIN-code: 2542-5260

Cand. Sci. (Chem.)

Russian Federation, Moscow

Dmitry A. Kudlay

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Nadezda N. Shershakova

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: nn.shershakova@nrcii.ru
ORCID iD: 0000-0001-6444-6499
SPIN-code: 7555-5925

Cand. Sci. (Biol.)

Russian Federation, Moscow

Musa R. Khaitov

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia; The Russian National Research Medical University named after N.I. Pirogov

Author for correspondence.
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803

MD, Dr. Sci. (Med.), Professor, Corresponding member of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

References

  1. Clinical guidelines "Atopic dermatitis". Russian Society of Dermatovenerologists and Cosmetologists, Russian Association of Allergists and Clinical Immunologists, Union of Pediatricians of Russia; 2020. 81 p. (In Russ).
  2. Wollenberg A, Bsarbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J Eur Acad Dermatol Venereol. 2018;32(5):657–682. doi: 10.1111/jdv.14891
  3. Capozza K, Gadd H, Kelley K, et al. Insights from caregivers on the impact of pediatric atopic dermatitis on families: "I'm tired, overwhelmed, and feel like i'm failing as a mother". Dermatitis. 2020;31(3):223–227. doi: 10.1097/DER.0000000000000582
  4. Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: A comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–337. doi: 10.1007/s12016-016-8548-5
  5. Wang V, Keefer M, Ong PY. Antibiotic choice and methicillin-resistant Staphylococcus aureus rate in children hospitalized for atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(3):314–317. doi: 10.1016/j.anai.2018.12.001
  6. Sugarman JL, Hersh AL, Okamura T, et al. A retrospective review of streptococcal infections in pediatric atopic dermatitis. Pediatr Dermatol. 2011;28(3):230–234. doi: 10.1111/j.1525-1470.2010.01377.x
  7. Altunbulakli C, Reiger M, Neumann AU, et al. Relations between epidermal barrier dysregulation and Staphylococcus species-dominated microbiome dysbiosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2018;142(5):1643–1647. doi: 10.1016/j.jaci.2018.07.005
  8. Baker S. Infectious disease. A return to the pre-antimicrobial era? Science. 2015;347(6226):1064–1066. doi: 10.1126/science.aaa2868
  9. Rodríguez-Rojas A, Moreno-Morales J, Mason AJ, Rolff J. Cationic antimicrobial peptides do not change recombination frequency in Escherichia coli. Biol Lett. 2018;14(3):20180006. doi: 10.1098/rsbl.2018.0006
  10. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi: 10.1179/2047773215Y.0000000030
  11. Makarova O, Johnston P, Rodriguez-Rojas A, et al. Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep. 2018;8(1):15359. doi: 10.1038/s41598-018-33593-7
  12. El Shazely B, Yu G, Johnston PR, Rolff J. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol. 2020;(11):103. doi: 10.3389/fmicb.2020.00103
  13. Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics. Proc Biol Sci. 2018;285(1874):20172687. doi: 10.1098/rspb.2017.2687
  14. Hollmann A, Martinez M, Maturana P, et al. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem. 2018;(6):204. doi: 10.3389/fchem.2018.00204
  15. Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;(9):281. doi: 10.3389/fphar.2018.00281
  16. Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695):20150292. doi: 10.1098/rstb.2015.0292
  17. Falanga A, Del Genio V, Galdiero S. Peptides and dendrimers: How to combat viral and bacterial infections. Pharmaceutics. 2021;13(1):101. doi: 10.3390/pharmaceutics13010101
  18. Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–375. doi: 10.1016/j.bbamem.2007.11.008
  19. Vesnina LE, Mamontova TV, Mikityuk MV, et al. Influence of C60 fullerene on the functional activity of phagocytic cells. Exp Clin Pharmacol. 2011;74(6):26–29. (In Russ). doi: 10.30906/0869-2092-2011-74-6-26-29
  20. Andreev I, Petrukhina A, Garmanova A, et al. Penetration of fullerene C60 derivatives through biological membranes. Fullerenes Nanotubes Carbon Nanostructures. 2008;(16):89–102. doi: 10.1080/15363830701885831
  21. Shershakova NN, Andreev SM, Tomchuk AA, et al. Wound healing activity of aqueous dispersion of fullerene C60 produced by "green technology". Nanomedicine. 2022;(47):102619. doi: 10.1016/j.nano.2022.102619
  22. Zhai HJ, Zhao YF, Li WL, et al. Observation of an all-boron fullerene. Nat Chem. 2014;6(8):727–731. doi: 10.1038/nchem.1999
  23. Mikheev IV. Analiz vodnih dispersii nemodifecirovannih fullerenov: 02.00.02, Lomonosov Moscow State University [dissertation abstract]. Moscow; 2018. 20 р. (In Russ).
  24. Bunz H, Plankenhorn S, Klein R. Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int J Nanomedicine. 2012;(7):4571–4580. doi: 10.2147/IJN.S33773
  25. Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154(2):220–229. doi: 10.1111/imm.12930
  26. Shershakova N, Baraboshkina E, Andreev S, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnol. 2016;14(1):1483–1493. doi: 10.1186/s12951-016-0159-z
  27. Andreev S, Purgina D, Bashkatova E, et al. Study of fullerene aqueous dispersion prepared by novel dialysis method. Simple way to fullerene aqueous solution. Fullerenes Nanotubes Carbon Nanostructures. 2015;23(9):792–800. doi: 10.1080/1536383X.2014.998758
  28. Gunasekera S, Muhammad T, Strömstedt AA, et al. Alanine and lysine scans of the LL-37-derived peptide fragment KR-12 reveal key residues for antimicrobial activity. Chembiochem. 2018;19(9):931–939. doi: 10.1002/cbic.201700599
  29. Cândido ES, Cardoso MH, Chan LY, et al. Short cationic peptide derived from archaea with dual antibacterial properties and anti-infective potential. ACS Infect Dis. 2019;5(7):1081–1086. doi: 10.1021/acsinfecdis.9b00073
  30. De Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. 2018;10(423):eaan4044. doi: 10.1126/scitranslmed.aan4044
  31. Stein T, Vater J, Kruft V, et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem. 1996;271(26):15428–15435. doi: 10.1074/jbc.271.26.15428
  32. Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell. 2010;1(2):143–152. doi: 10.1007/s13238-010-0004-3
  33. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;(6):194. doi: 10.3389/fcimb.2016.00194
  34. Dias AP, da Silva Santos S, da Silva JV, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;(573):118814. doi: 10.1016/j.ijpharm.2019.118814
  35. Brahmachary M, Krishnan SP, Koh JL, et al. ANTIMIC: A database of antimicrobial sequences. Nucleic Acids Res. 2004;(32):586–589. doi: 10.1093/nar/gkh032
  36. Lu J, Xu H, Xia J, et al. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol. 2020;(11):563030. doi: 10.3389/fmicb.2020.563030
  37. Jia F, Wang J, Peng J, et al. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin (Shanghai). 2017;49(10):916–925. doi: 10.1093/abbs/gmx091
  38. Moiola M, Memeo MG, Quadrelli P. Stapled peptides-a useful improvement for peptide-based drugs. Molecules. 2019;24(20):3654. doi: 10.3390/molecules24203654
  39. Migoń D, Neubauer D, Kamysz W. Hydrocarbon stapled antimicrobial peptides. Protein J. 2018;37(1):2–12. doi: 10.1007/s10930-018-9755-0
  40. Verdine GL, Hilinski GJ. Stapled peptides for intracellular drug targets. Methods Enzymol. 2012;(503):3–33. doi: 10.1016/B978-0-12-396962-0.00001-X
  41. Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–7880. doi: 10.1039/d0cs00729c
  42. Park CB, Yi KS, Matsuzaki K, et al. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA. 2000;97(15):8245–8250. doi: 10.1073/pnas.150518097
  43. Li D, Yang Y, Li R, et al. N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci. 2021;27(9):e3337. doi: 10.1002/psc.3337
  44. Kumar VT, Asha R, George S. Identification and functional characterisation of Esculentin-2 HYba peptides and their C-terminally amidated analogs from the skin secretion of an endemic frog. Nat Prod Res. 2021;35(8):1262–1266. doi: 10.1080/14786419.2019.1644636
  45. Hirano M, Saito C, Yokoo H, et al. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules. 2021;26(2):444. doi: 10.3390/molecules26020444
  46. Nguyen HL, Trujillo-Paez JV, Umehara Y, et al. Role of antimicrobial peptides in skin barrier repair in individuals with atopic dermatitis. Int J Mol Sci. 2020;21(20):7607. doi: 10.3390/ijms21207607
  47. Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis // Int J Mol Sci. 2021;22(8):4130. doi: 10.3390/ijms22084130
  48. Leung DI. Staphylococcus aureus in atopic dermatitis. In: Reitamo S, Luger TA, Steinhoff M, eds. Textbook of atopic dermatitis. London: Informa Healthcare; 2008. Р. 59–68.
  49. Lin YT, Wang CT, Chiang BL. Role of bacterial pathogens in atopic dermatitis. Clin Rev Allergy Immunol. 2007;33(3):167–177. doi: 10.1007/s12016-007-0044-5
  50. Byrd AL, Deming C, Cassidy SK, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. doi: 10.1126/scitranslmed.aal4651
  51. Chng KR, Tay AS, Li C, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. doi: 10.1038/nmicrobiol.2016.106
  52. Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109(21):8334–8339. doi: 10.1073/pnas.1205624109
  53. Grice K, Sattar H, Baker H, Sharratt M. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975;64(5):313–315. doi: 10.1111/1523-1747.ep12512258
  54. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–1160. doi: 10.1056/NEJMoa021481
  55. Gupta R, Gupta N. Quorum sensing, bioluminescence and chemotaxis. In: Gupta R, Gupta N, eds. Fundamentals of bacterial physiology and metabolism. Springer: Singapore; 2021. Р. 633–652.
  56. Kanda N, Hau C, Tada Y, et al. Decreased serum LL-37 and vitamin D3 levels in atopic dermatitis: Relationship between IL-31 and oncostatin M. Allergy. 2012;67(6):804–812. doi: 10.1111/j.1398-9995.2012.02824.x
  57. Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of Malassezia spp. in atopic dermatitis. J Clin Med. 2015;4(6):1217–1228. doi: 10.3390/jcm4061217
  58. Roesner LM, Werfel T. Autoimmunity (or Not) in atopic dermatitis. Front Immunol. 2019;(10):2128. doi: 10.3389/fimmu.2019.02128
  59. Badloe FM, De Vriese S, Coolens K, et al. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy. 2020;(10):34. doi: 10.1186/s13601-020-00338-7
  60. Pellefigues C. IgE autoreactivity in atopic dermatitis: Paving the road for autoimmune diseases? Antibodies (Basel). 2020;9(3):47. doi: 10.3390/antib9030047.38
  61. Machado M, Silva S, Costa EM. Are antimicrobial peptides a 21st-century solution for atopic dermatitis? Int J Molecular Scis. 2023;24(17):13460. doi: 10.3390/ijms241713460

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Growth intensity of E. coli Dh5α colonies under the influence of AB-18.

Download (298KB)
3. Fig. 2. Growth intensity of E. coli Dh5α colonies under the influence of AB-17.

Download (294KB)
4. Fig. 3. Growth intensity of E. coli Dh5α colonies under the influence of AB-14.

Download (268KB)

Copyright © Pharmarus Print Media, 2023



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies