Cationic peptides as promising compounds for the treatment of bacterial complications in atopic dermatitis: Antibacterial activity assessment
- Authors: Galkina A.A.1, Bolyakina D.K.1, Shatilova A.V.1, Shatilov A.A.1, Babikhina M.O.1, Golomidova A.K.2, Nikonova A.A.1, Andreev S.M.1, Kudlay D.A.1, Shershakova N.N.1, Khaitov M.R.1,3
-
Affiliations:
- National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences
- The Russian National Research Medical University named after N.I. Pirogov
- Issue: Vol 20, No 4 (2023)
- Pages: 387-401
- Section: Original studies
- Submitted: 28.07.2023
- Accepted: 23.10.2023
- Published: 02.12.2023
- URL: https://rusalljournal.ru/raj/article/view/15038
- DOI: https://doi.org/10.36691/RJA15038
- ID: 15038
Cite item
Abstract
BACKGROUND: The decrease in the effectiveness of antibiotics against the background of resistance of microorganisms aggravates the therapy of atopic dermatitis complicated by bacterial infection and actualizes the development of new antimicrobial agents.
AIM: To develop, synthesize, and evaluate the antibacterial activity of cationic peptides and an aqueous solution of fullerene C60 to create drugs based on them that will have a spectrum of biological activity, including anti-inflammatory, antiallergic, and antibacterial activities.
MATERIALS AND METHODS: This study analyzed the developed linear and dendrimer cationic peptides, whose structure was confirmed by matrix-assisted laser desorption ionization–time of flight mass spectrometry. An aqueous solution of fullerene C60 was obtained using a uniquely developed and patented technology. Antibacterial activity was assessed by diffusion into agar using disks (screening) and serial dilution, which was used to determine the minimum bactericidal concentration of the studied compounds.
RESULTS: Moreover, 42 cationic peptides with various structures were developed and synthesized. The molecular weight of the peptides did not exceed 5,000 Da. They contained 7–25 amino acids with charges from +5 to +16. Screening was carried out through diffusion into agar using disks and revealed 15 peptides that showed activity against Escherichia coli Dh5a. Thus, using the method of counting colonies, the peptides AB-14, AB-17, and AB-18 showed bactericidal activity relative to E. coli Dh5a in concentrations of 0.03, 0.15, and 0.74 mM, respectively, which exceeded that of ampicillin (0.74 mM) several times. Analysis of an aqueous solution of fullerene C60 did not reveal its antibacterial activity.
CONCLUSIONS: The antibacterial activity of the resulting peptides makes them promising for the development of antibacterial therapeutic agents.
Full Text
About the authors
Anastasia A. Galkina
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: anastasia.a.galkina@gmail.com
ORCID iD: 0000-0003-4521-0813
SPIN-code: 7329-0197
Russian Federation, Moscow
Darya K. Bolyakina
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: bolyakina.dasha@gmail.com
ORCID iD: 0009-0006-2223-1514
Russian Federation, Moscow
Anastasia V. Shatilova
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: av.timofeeva@nrcii.ru
ORCID iD: 0000-0003-3780-2878
SPIN-code: 1988-1536
Russian Federation, Moscow
Artem A. Shatilov
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: aa.shatilov@nrcii.ru
ORCID iD: 0000-0002-4675-8074
SPIN-code: 6768-5796
Russian Federation, Moscow
Marina O. Babikhina
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: mbabihina@gmail.com
ORCID iD: 0009-0000-5935-1647
SPIN-code: 4621-0268
Russian Federation, Moscow
Alla K. Golomidova
Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences
Email: alla_golomidova@mail.ru
ORCID iD: 0000-0001-9893-0270
SPIN-code: 9954-3759
Cand. Sci. (Biol.)
Russian Federation, MoscowAlexandra A. Nikonova
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: aa.nikonova@nrcii.ru
ORCID iD: 0000-0001-9610-0935
SPIN-code: 1950-5594
Cand. Sci. (Biol.)
Russian Federation, MoscowSergey M. Andreev
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: andsergej@yandex.ru
ORCID iD: 0000-0001-8297-579X
SPIN-code: 2542-5260
Cand. Sci. (Chem.)
Russian Federation, MoscowDmitry A. Kudlay
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880
MD, Dr. Sci. (Med.)
Russian Federation, MoscowNadezda N. Shershakova
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia
Email: nn.shershakova@nrcii.ru
ORCID iD: 0000-0001-6444-6499
SPIN-code: 7555-5925
Cand. Sci. (Biol.)
Russian Federation, MoscowMusa R. Khaitov
National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia; The Russian National Research Medical University named after N.I. Pirogov
Author for correspondence.
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803
MD, Dr. Sci. (Med.), Professor, Corresponding member of the Russian Academy of Sciences
Russian Federation, Moscow; MoscowReferences
- Clinical guidelines "Atopic dermatitis". Russian Society of Dermatovenerologists and Cosmetologists, Russian Association of Allergists and Clinical Immunologists, Union of Pediatricians of Russia; 2020. 81 p. (In Russ).
- Wollenberg A, Bsarbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part I. J Eur Acad Dermatol Venereol. 2018;32(5):657–682. doi: 10.1111/jdv.14891
- Capozza K, Gadd H, Kelley K, et al. Insights from caregivers on the impact of pediatric atopic dermatitis on families: "I'm tired, overwhelmed, and feel like i'm failing as a mother". Dermatitis. 2020;31(3):223–227. doi: 10.1097/DER.0000000000000582
- Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: A comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–337. doi: 10.1007/s12016-016-8548-5
- Wang V, Keefer M, Ong PY. Antibiotic choice and methicillin-resistant Staphylococcus aureus rate in children hospitalized for atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(3):314–317. doi: 10.1016/j.anai.2018.12.001
- Sugarman JL, Hersh AL, Okamura T, et al. A retrospective review of streptococcal infections in pediatric atopic dermatitis. Pediatr Dermatol. 2011;28(3):230–234. doi: 10.1111/j.1525-1470.2010.01377.x
- Altunbulakli C, Reiger M, Neumann AU, et al. Relations between epidermal barrier dysregulation and Staphylococcus species-dominated microbiome dysbiosis in patients with atopic dermatitis. J Allergy Clin Immunol. 2018;142(5):1643–1647. doi: 10.1016/j.jaci.2018.07.005
- Baker S. Infectious disease. A return to the pre-antimicrobial era? Science. 2015;347(6226):1064–1066. doi: 10.1126/science.aaa2868
- Rodríguez-Rojas A, Moreno-Morales J, Mason AJ, Rolff J. Cationic antimicrobial peptides do not change recombination frequency in Escherichia coli. Biol Lett. 2018;14(3):20180006. doi: 10.1098/rsbl.2018.0006
- Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi: 10.1179/2047773215Y.0000000030
- Makarova O, Johnston P, Rodriguez-Rojas A, et al. Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep. 2018;8(1):15359. doi: 10.1038/s41598-018-33593-7
- El Shazely B, Yu G, Johnston PR, Rolff J. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol. 2020;(11):103. doi: 10.3389/fmicb.2020.00103
- Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics. Proc Biol Sci. 2018;285(1874):20172687. doi: 10.1098/rspb.2017.2687
- Hollmann A, Martinez M, Maturana P, et al. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem. 2018;(6):204. doi: 10.3389/fchem.2018.00204
- Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;(9):281. doi: 10.3389/fphar.2018.00281
- Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695):20150292. doi: 10.1098/rstb.2015.0292
- Falanga A, Del Genio V, Galdiero S. Peptides and dendrimers: How to combat viral and bacterial infections. Pharmaceutics. 2021;13(1):101. doi: 10.3390/pharmaceutics13010101
- Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–375. doi: 10.1016/j.bbamem.2007.11.008
- Vesnina LE, Mamontova TV, Mikityuk MV, et al. Influence of C60 fullerene on the functional activity of phagocytic cells. Exp Clin Pharmacol. 2011;74(6):26–29. (In Russ). doi: 10.30906/0869-2092-2011-74-6-26-29
- Andreev I, Petrukhina A, Garmanova A, et al. Penetration of fullerene C60 derivatives through biological membranes. Fullerenes Nanotubes Carbon Nanostructures. 2008;(16):89–102. doi: 10.1080/15363830701885831
- Shershakova NN, Andreev SM, Tomchuk AA, et al. Wound healing activity of aqueous dispersion of fullerene C60 produced by "green technology". Nanomedicine. 2022;(47):102619. doi: 10.1016/j.nano.2022.102619
- Zhai HJ, Zhao YF, Li WL, et al. Observation of an all-boron fullerene. Nat Chem. 2014;6(8):727–731. doi: 10.1038/nchem.1999
- Mikheev IV. Analiz vodnih dispersii nemodifecirovannih fullerenov: 02.00.02, Lomonosov Moscow State University [dissertation abstract]. Moscow; 2018. 20 р. (In Russ).
- Bunz H, Plankenhorn S, Klein R. Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int J Nanomedicine. 2012;(7):4571–4580. doi: 10.2147/IJN.S33773
- Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154(2):220–229. doi: 10.1111/imm.12930
- Shershakova N, Baraboshkina E, Andreev S, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnol. 2016;14(1):1483–1493. doi: 10.1186/s12951-016-0159-z
- Andreev S, Purgina D, Bashkatova E, et al. Study of fullerene aqueous dispersion prepared by novel dialysis method. Simple way to fullerene aqueous solution. Fullerenes Nanotubes Carbon Nanostructures. 2015;23(9):792–800. doi: 10.1080/1536383X.2014.998758
- Gunasekera S, Muhammad T, Strömstedt AA, et al. Alanine and lysine scans of the LL-37-derived peptide fragment KR-12 reveal key residues for antimicrobial activity. Chembiochem. 2018;19(9):931–939. doi: 10.1002/cbic.201700599
- Cândido ES, Cardoso MH, Chan LY, et al. Short cationic peptide derived from archaea with dual antibacterial properties and anti-infective potential. ACS Infect Dis. 2019;5(7):1081–1086. doi: 10.1021/acsinfecdis.9b00073
- De Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. 2018;10(423):eaan4044. doi: 10.1126/scitranslmed.aan4044
- Stein T, Vater J, Kruft V, et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem. 1996;271(26):15428–15435. doi: 10.1074/jbc.271.26.15428
- Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell. 2010;1(2):143–152. doi: 10.1007/s13238-010-0004-3
- Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;(6):194. doi: 10.3389/fcimb.2016.00194
- Dias AP, da Silva Santos S, da Silva JV, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;(573):118814. doi: 10.1016/j.ijpharm.2019.118814
- Brahmachary M, Krishnan SP, Koh JL, et al. ANTIMIC: A database of antimicrobial sequences. Nucleic Acids Res. 2004;(32):586–589. doi: 10.1093/nar/gkh032
- Lu J, Xu H, Xia J, et al. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol. 2020;(11):563030. doi: 10.3389/fmicb.2020.563030
- Jia F, Wang J, Peng J, et al. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin (Shanghai). 2017;49(10):916–925. doi: 10.1093/abbs/gmx091
- Moiola M, Memeo MG, Quadrelli P. Stapled peptides-a useful improvement for peptide-based drugs. Molecules. 2019;24(20):3654. doi: 10.3390/molecules24203654
- Migoń D, Neubauer D, Kamysz W. Hydrocarbon stapled antimicrobial peptides. Protein J. 2018;37(1):2–12. doi: 10.1007/s10930-018-9755-0
- Verdine GL, Hilinski GJ. Stapled peptides for intracellular drug targets. Methods Enzymol. 2012;(503):3–33. doi: 10.1016/B978-0-12-396962-0.00001-X
- Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–7880. doi: 10.1039/d0cs00729c
- Park CB, Yi KS, Matsuzaki K, et al. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA. 2000;97(15):8245–8250. doi: 10.1073/pnas.150518097
- Li D, Yang Y, Li R, et al. N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci. 2021;27(9):e3337. doi: 10.1002/psc.3337
- Kumar VT, Asha R, George S. Identification and functional characterisation of Esculentin-2 HYba peptides and their C-terminally amidated analogs from the skin secretion of an endemic frog. Nat Prod Res. 2021;35(8):1262–1266. doi: 10.1080/14786419.2019.1644636
- Hirano M, Saito C, Yokoo H, et al. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules. 2021;26(2):444. doi: 10.3390/molecules26020444
- Nguyen HL, Trujillo-Paez JV, Umehara Y, et al. Role of antimicrobial peptides in skin barrier repair in individuals with atopic dermatitis. Int J Mol Sci. 2020;21(20):7607. doi: 10.3390/ijms21207607
- Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis // Int J Mol Sci. 2021;22(8):4130. doi: 10.3390/ijms22084130
- Leung DI. Staphylococcus aureus in atopic dermatitis. In: Reitamo S, Luger TA, Steinhoff M, eds. Textbook of atopic dermatitis. London: Informa Healthcare; 2008. Р. 59–68.
- Lin YT, Wang CT, Chiang BL. Role of bacterial pathogens in atopic dermatitis. Clin Rev Allergy Immunol. 2007;33(3):167–177. doi: 10.1007/s12016-007-0044-5
- Byrd AL, Deming C, Cassidy SK, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. doi: 10.1126/scitranslmed.aal4651
- Chng KR, Tay AS, Li C, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. doi: 10.1038/nmicrobiol.2016.106
- Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109(21):8334–8339. doi: 10.1073/pnas.1205624109
- Grice K, Sattar H, Baker H, Sharratt M. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975;64(5):313–315. doi: 10.1111/1523-1747.ep12512258
- Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–1160. doi: 10.1056/NEJMoa021481
- Gupta R, Gupta N. Quorum sensing, bioluminescence and chemotaxis. In: Gupta R, Gupta N, eds. Fundamentals of bacterial physiology and metabolism. Springer: Singapore; 2021. Р. 633–652.
- Kanda N, Hau C, Tada Y, et al. Decreased serum LL-37 and vitamin D3 levels in atopic dermatitis: Relationship between IL-31 and oncostatin M. Allergy. 2012;67(6):804–812. doi: 10.1111/j.1398-9995.2012.02824.x
- Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of Malassezia spp. in atopic dermatitis. J Clin Med. 2015;4(6):1217–1228. doi: 10.3390/jcm4061217
- Roesner LM, Werfel T. Autoimmunity (or Not) in atopic dermatitis. Front Immunol. 2019;(10):2128. doi: 10.3389/fimmu.2019.02128
- Badloe FM, De Vriese S, Coolens K, et al. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy. 2020;(10):34. doi: 10.1186/s13601-020-00338-7
- Pellefigues C. IgE autoreactivity in atopic dermatitis: Paving the road for autoimmune diseases? Antibodies (Basel). 2020;9(3):47. doi: 10.3390/antib9030047.38
- Machado M, Silva S, Costa EM. Are antimicrobial peptides a 21st-century solution for atopic dermatitis? Int J Molecular Scis. 2023;24(17):13460. doi: 10.3390/ijms241713460