Promising compounds from natural sources against COVID-19

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract


The epidemic associated with the new Sars-CoV-2 coronavirus has affected almost all countries of the world and no reliable treatment for this infection exists yet. Many laboratories in the world are currently conducting intensive experimental and theoretical/in silico studies to find effective drugs specific for this disease (COVID-19), but unfortunately, it may take a long time before new drugs appear in the clinical practice. One of the currently widely accepted approaches for finding active compounds is based on the possibility of using existing drugs approved by government medical organizations (as the FDA). Their choice is based on screening, based on the use of computer models that evaluate the specific binding (energy minimization) of such drugs to target molecules that are important for the life cycle. Thus, a few well-known antiviral drugs against HIV, hepatitis C and others selected on this basis exerted an antiviral effect in vitro, but their real effectiveness was far from expected. It should be emphasized that the severe clinical manifestation of the disease is an acute respiratory distress syndrome, mediated by oxidative stress and an aggressive immune attack on its own cells. In this regard, the use of compounds with high antioxidant activity could have advantages both prophylactically and medically. There is a huge range of natural compounds, including official and traditional medicine, which represent valuable unlimited potential for COVID-19 therapy, the advantage of such compounds in their low toxicity. In this review, we tried to focus on the clinical and pharmacological properties of natural substances, mainly flavonoids, which can become promising drugs for the treatment and prevention of COVID-19. The review includes information on possible virus targets and antiviral drugs. Much attention is paid to the question of inhibition of viral activity. Based on published data, including structural features of various compounds, a prediction is made about the prospects of using these compounds as inhibitors of viral activity, as well as anti-inflammatory drugs for the treatment of COVID-19. An important step in the analysis of compounds was the study of the possibility of their interaction with cellular targets of the virus, as well as the ability to bind to the proteins of the Sars-CoV-2 virus itself.


Restricted Access

Sergey M. Andreev

NRC Institute of Immunology FMBA of Russia

Author for correspondence.
Email: sm.andreev@nrcii.ru
ORCID iD: 0000-0001-8297-579X

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Ph.D. (Chemistry), Head of the Laboratory of Peptide Immunogens

Nadezhda N. Shershakova

NRC Institute of Immunology FMBA of Russia

Email: nn.shershakova@nrcii.ru
ORCID iD: 0000-0001-6444-6499

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

PhD (Biology), Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology

Ksenia V. Kozhikhova

NRC Institute of Immunology FMBA of Russia

Email: k.v.kozhikhova@gmail.com
ORCID iD: 0000-0001-5124-6826

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

PhD (Chemistry), Researcher, Laboratory of Peptide Immunogens

Artyom A. Shatilov

NRC Institute of Immunology FMBA of Russia

Email: Aa.shatilov@nrcii.ru
ORCID iD: 0000-0002-4675-8074

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Junior Researcher, Laboratory of Peptide Immunogens

Anastasiia V. Timofeeva

NRC Institute of Immunology FMBA of Russia

Email: av.timofeeva@nrcii.ru
ORCID iD: 0000-0003-3780-2878

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Junior Researcher, Laboratory of Peptide Immunogens

Evgeny A. Turetskiy

NRC Institute of Immunology FMBA of Russia

Email: EA.Turetskiy@nrcii.ru
ORCID iD: 0000-0002-6822-3409

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Junior Researcher, Laboratory of Peptide Immunogens

Dmitry A. Kudlay

NRC Institute of Immunology FMBA of Russia, Department of Molecular immunology

Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Doctor of Medical Science (DMSc), Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology

Musa R. Khaitov

NRC Institute of Immunology FMBA of Russia, Department of Molecular immunology

Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0001-7651-8920

Russian Federation, 24, Kashirskoye shosse, Moscow, 115522

Corresponding Member, Director

  1. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020; in press. doi: 10.1016/j.apsb.2020.02.008.
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  3. Wilde AH, Snijder EJ, Kikkert M, Hemert MJ. Host factors in coronavirus replication. Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Book Chapter Host Factors in Coronavirus Replication. Berlin: Springer. 2017:42. doi: 10.1007/82_2017_25.
  4. Medhi B, Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S. Drug targets for corona virus: A systematic review. Indian journal of pharmacology. 2020;52(1):56-65. doi: 10.4103/ijp.IJP_115_20.
  5. Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020; in press. doi: 10.1016/j.jpha.2020.03.009.
  6. Yoshino R, Yasuo N, Sekijima M. Identification of key interactions between SARS-CoV-2 Main Protease and inhibitor drug candidates. ChemRxiv Preprint. 2020. doi: 10.26434/chemrxiv.12009636.
  7. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from COVID-19 virus and discovery of its inhibitors BioRxiv Preprint. 2020. doi: 10.1101/2020.02.26.964882.
  8. Chakraborti S, Srinivasan N. Drug Repurposing Approach Targeted Against Main Protease of SARS-CoV-2 Exploiting ‘Neighbourhood Behaviour’ in 3D Protein Structural Space and 2D Chemical Space of Small Molecules. ChemRxiv Preprint, 2020. doi: 10.26434/chemrxiv.12057846.v1.
  9. Kumar Y, Singh H. In Silico Identification and Docking-Based Drug Repurposing Against the Main Protease of SARS-CoV-2, Causative Agent of COVID-19. ChemRxiv Preprint. 2020. doi: 10.26434/chemrxiv.12049590.v1.
  10. Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 2020;6(3):315-331. doi: 10.1021/acscentsci.0c00272.
  11. Li Z, Li X, Huang Y, Wu Y, Liu R, Zhou L, Lin Y, Wu D, Zhang L, Liu H, Xu X, Yu K, Zhang Y, Cui J, Zhan C, Wang X, Luo H. FEP-based screening prompts drug repositioning against COVID-19. BioRxiv preprint. 2020. doi: 10.1101/2020.03.23.004580.
  12. Tonew M, Tonew E, Mentel R. The antiviral activity of dipyridamole. Acta virologica. 1977;21(2):146-150.
  13. Thomé MP, Borde C, Larsen AK, Henriques JAP, Lenz G, Escargueil AE, Maréchal V. Dipyridamole as a new drug to prevent Epstein-Barr virus reactivation. Antiviral Research. 2019;172:104615. DOI: 1016/j.antiviral.2019.104615.
  14. Durdagi S, Aksoydan B, Dogan B, Sahin K, Shahraki A. Screening of clinically approved and investigation drugs as potential inhibitors of COVID-19 main protease: A virtual drug repurposing study. ChemRxiv Preprint. 2020. doi: 10.26434/chemrxiv.12032712.v1.
  15. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30304-4.
  16. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combing antiviral and anti-inflammatory treatments. Lancet. 2020;20(4):400-402. doi: 10.1016/S1473-3099(20)30132-8.
  17. Chen Jun, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. A pilot study of hydroxychloroquine in treatment of patients with moderate coronavirus disease-19 (COVID-19). J Zhejl Univ. 2020 49(2):215-219.
  18. Smits SL, Brand JMA, Lang A, Leijten LME, Jcken WF, Amerongen G, Osterhaus ADME, Andeweg AC, Haagmans BL. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol. 2011;85(9):4234-4245. doi: 10.1128/JVI.02395-10.
  19. Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant compounds and their antioxidant mechanism. Book Chapter Antioxidants, 6 Nov 2019. doi: 10.5772/intechopen.85270.
  20. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136-1142. doi: 10.1038/ni.1960.
  21. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN Electronic Journal, 2020, in press. doi: 10.2139/ssrn.3527420.
  22. Lee S, Hirohama M, Noguchi M, Nagata K, Kawaguchi A. Influenza A virus infection triggers pyroptosis and apoptosis of respiratory epithelial cells through the type I interferon signaling pathway in a mutually exclusive manner. J Virology. 2018;92(14):e00396-18. doi: 10.1128/JVI.00396-18.
  23. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235-249. doi: 10.1016/j.cell.2008.02.043.
  24. Baunthiyal M, Singh V, Dwivedi S. Insights of antioxidants as molecules for drug discovery. Int J Pharm. 2017;13:874-889. doi: 10.3923/ijp.2017.874.889.
  25. Bendary E, Francis RR, Ali HMG, Sarwat MI, Hady SE. Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci. 2013;58(2):173-181. doi: 10.1016/j.aoas.2013.07.002.
  26. Shaghaghi N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants. ChemRxiv Preprint. 2020. doi: 10.26434/chemrxiv.11935722.v1.
  27. Wang K, Chen W, Zhou Y, Lian J, Zhang Z, Du P, Gong L, Zhang Y, Cui H, Geng J, Wang B, Sun X, Wang C, Yang X, Lin P, Deng Y, Wei D, Yang X, Zhu Y, Zhang K, Zheng Z, Miao J, Guo T, Shi Y, Zhang J, Fu L, Wang Q, Bian H, Zhu P, Chen Z. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv preprint. 2020. doi: 10.1101/2020.03.14.988345.
  28. Zhang X, Tang X, Liu H, Li L, Hou Q, Gao J. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro. Onc Rep. 2012;27:1128-1134. doi: 10.3892/or.2011.1599.
  29. Tang Y, Zhou F, Luo Z, Li X, Yan H, Wang M, Huang F, Yue S. Multiple therapeutic effects of adjunctive baicalin therapy in experimental bacterial meningitis. Inflammation. 2010;33(3):180-188. doi: 10.1007/s10753-009-9172-9.
  30. Lin S, Ho C, Chuo W, Li S, Wang TT, Lin C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infectious Diseases. 2017;17(1). doi: 10.1186/s12879-017-2253-8.
  31. Zhu J, Wang J, Sheng Y, Zou Y, Bo L, Wang F, Lou J, Fan X, Bao R, Wu Y, Chen F, Deng X, Li J. Baicalin Improves Survival in a Murine Model of Polymicrobial Sepsis via Suppressing Inflammatory Response and Lymphocyte Apoptosis. PLoS ONE. 2012;7(5):e35523. doi: 10.1371/journal.pone.0035523.
  32. Liu H, Ye F, Sun Q, Liang H, Li C, Lu R, Huang B, Tan W, Lai L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. BioRxiv preprint. 2020. doi: 10.1101/2020.04.10.035824.
  33. Yu M, Lee J, Lee JM, Kim Y, Chin Y, Jee J, Keum Y, Jeong Y. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22(12):4049-4054. doi: 10.1016/j.bmcl.2012.04.081.
  34. Keum Y, Jeong Y. Development of chemical inhibitors of the SARS coronavirus: Viral helicase as a potential target. Biochemical Pharmacology. 2012;84(10):1351-1358. doi: 10.1016/j.bcp.2012.08.012.
  35. Chen C, Lin CPC, Huang K, Chen W, Hsieh H, Liang P, Hsu JTA. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3’-digallate (TF3). Evidence-Based Compl Alter Med. 2005;2(2):209-215. doi: 10.1093/ecam/neh081.
  36. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335-337. doi: 10.1016/S2468-1253(20)30048-0.
  37. Lin S, Ho C, Chuo W, Li S, Wang TT, Lin C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. doi: 10.1186/s12879-017-2253-8.
  38. Glinsky G. Harnessing powers of genomics to build molecular maps of coronavirus targets in human cells: a guide for existing drug repurposing and experimental studies identifying candidate therapeutics to mitigate the pandemic COVID-19. ChemRxiv Preprint. 2020. doi: 10.26434/chemrxiv.12052512.
  39. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L, Shen Y, Luo M, Zuo G, Hu J, Duan D, Nie Y, Shi X, Wang W, Han Y, Li T, Liu Y, Ding M, Deng H, Xu X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78:11334-11339. doi: 10.1128/JVI.78.20.11334-11339.2004.
  40. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharm. 2008;585(2-3):325-337. doi: 10.1016/j.ejphar.2008.03.008.
  41. Yu G, Kubota H, Okita M, Maeda T. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLoS One. 2017;12(5):e0178525. doi: 10.1371/journal.pone.0178525.
  42. Silvestri M, Rossi GA. Melatonin: its possible role in the management of viral infections-a brief review. Ital J Pediatrics. 2013;39(1):61. doi: 10.1186/1824-7288-39-61.
  43. Huang S, Liao C, Chen S, Shi L, Lin L, Chen Y, Cheng C, Sytwu H, Shang S, Lin G. Melatonin possesses an anti-influenza potential through its immune modulatory effect. J Funct Foods. 2019;58:189-198. doi: 10.1016/j.jff.2019.04.062.
  44. Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J, Zheng Z. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res. 2020;8(1):10. doi: 10.1038/s41413-020-0087-2.
  45. Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrin. 2017;2017:1835195. doi: 10.1155/2017/1835195.
  46. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C, Reiter RJ. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. doi: 10.1016/j.lfs.2020.117583.
  47. Li-Mei W, Jie T, Shan-He W, Dong-Mei M, Peng-Jiu Y. Anti-inflammatory and anti-oxidative effects of dexpanthenol on lipopolysaccharide induced acute lung injury in mice. Inflammation. 2016;39(5):1757-1763. doi: 10.1007/s10753-016-0410-7.
  48. Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, Cai JP, Zhou J, Yuan S, Kok KH, To KK, Chan IH, Zhang AJ, Sit KY, Au WK, Yuen KY. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. 2020, Apr 9:ciaa410. doi: 10.1093/cid/ciaa410.
  49. Friedman S, DeCamp D, Sijbesma R, Srdanov G, Wudl F, Kenyon G. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. Journal of the American Chemical Society. 1993;115(15):6506-6509. doi: 10.1021/ja00068a005.
  50. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M. Anti-HIV properties of cationic fullerene derivatives. Bioorganic & Medicinal Chemistry Letters. 2005;15(15):3615-3618. doi: 10.1016/j.bmcl.2005.05.069.
  51. Muñoz A, Sigwalt D, Illescas BM, Luczkowiak J, Rodríguez-Pérez L, Nierengarten I, Holler M, Remy JS, Buffet K, Vincent SP, Rojo J, Delgado R, Nierengarten JF, Martín N. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nature chemistry. 2016;8(1):50-57. doi: 10.1038/NCHEM.2387.
  52. Nierengarten I, Nierengarten JF. Fullerene sugar balls: a new class of biologically active fullerene derivatives. Chemistry–An Asian Journal. 2014;9(6):1436-1444. doi: 10.1002/asia.201400133.
  53. Klimova R, Andreev S, Momotyuk E, Demidova N, Fedorova N, Chernoryzh Y, Yurlov K, Turetskiy E, Baraboshkina E, Shershakova N, Simonov R, Kushch A, Khaitov M, Gintsburg A. Aqueous fullerene C60 solution suppresses herpes simplex virus and cytomegalovirus infections. Fullerenes, Nanotubes and Carbon Nanostructures. 2020;28(6):487-499. doi: 10.1080/1536383X.2019.1706495.
  54. Kornev AB, Khakina EA, Troyanov SI, Kushch AA, Peregudov A, Vasilchenko A, Deryabin DG, Martynenko VM, Troshin PA. Facile preparation of amine and amino acid adducts of [60] fullerene using chlorofullerene C60Cl6 as a precursor. Chemical Communications. 2012;48(44):5461-5463. doi: 10.1039/c2cc00071g.
  55. Yudoh K. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine. 2009;4:217-225. doi: 10.2147/ijn.s7653.
  56. Wakimoto T, Uchida K, Mimura K, Kanagawa T, Mehandjiev TR, Aoshima H, Kokubo K, Mitsuda N, Yoshioka Y, Tsutsumi Y, Kimura T, Yanagihara I. Hydroxylated fullerene: a potential antiinflammatory and antioxidant agent for preventing mouse preterm birth. Am J Obstet Gynecol. 2015;213(5):708.e1-708.e9. doi: 10.1016/j.ajog.2015.07.017.
  57. Shershakova N, Bashkatova E, Purgina D, Makarova E, Andreev S, Khaitov M. Wound healing and anti-inflammatory effects of aqueous fullerene С60 dispersion. Allergy. 2016;71(S102):315.

Views

Abstract - 64

PDF (Russian) - 1

PDF (English) - 1

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Russian Allergological Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies