Dendritic cells: perspectives of clinical application

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


In this review basic properties of dendritic cells and their role in immunopathological conditions are considered. Methods of dendritic cells cultivation and their influence on functional activity of dendritic cells are described. Perspectives of dendritic cells clinical application for immunotherapy of cancer, infection diseases, allergy and autoimmune diseases are analyzed.

References

  1. Родина А.В., Москалева Е.Ю., Беляев Д.Л. Получение функционально активных дендритных клеток человека с использованием препарата Лейкинферон в качестве индуктора созревания. Мед. иммунол. 2003, № 6, с. 19-26.
  2. Steiman R.M., Cohn Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 2004, № 137, р. 1142-1162.
  3. Пащенков М.В. Физиология клеток врожденной иммунной системы: дендритные клетки. Иммунология. 2006, № 6, с. 368-377.
  4. Obermaier B., Dauer М., Pohl К. Maturation of dendritic cells from monocytes within 48 hours: a new strategy for dendritic cells generation in vitro. Abstracts of 7th International Symposium on dendritic cells. Bamberg, Germany. 2002, р. 127.
  5. Макаренкова В.П. Система дендритных клеток: роль в индукции иммунитета и в патогенезе инфекционных, аутоиммунных заболеваний. Иммунология. 2002, № 2, с. 68-76.
  6. Reid C.D. Dendritic cells and immunotherapy for malignant disease. Br. J.Haemot. 2001, v. 112, р. 874-887.
  7. Walsh S.R., Bhardwaj N. Dendritic cells and the promise of therapeutic vaccines for human immunodeficiency virus (HIV-1). Curr. HIV Resp. 2003, v. 1, р. 53-61.
  8. Thurner B., Roder С., Diecmann D. et al. Generation of large numbers of fully mature and stsble dendritic cells from leukapheresis products for clinical application. J. Immunol. Meth. 1999, v. 223, р. 1-15.
  9. Holt P.G., Oliver Н. Cross-presentation, dendritic cell subsets and the generation of immunity to cellular antigens. Immunology. 2002, v. 75, р. 405-413.
  10. Klinman D.M. Use of CpG oligodeoxynucleotides as immune adjuvants. Science. 2001, v. 199, p. 201-216.
  11. Ochando J.C. Alloantigen-presenting plasmocitoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunol. 2004, No. 4, p. 24-34.
  12. Pickl W.F., Majdic O. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. Immunol. 1996, v. 157, p. 3850-3859.
  13. Takeda K. Toll-like receptors. Immunol., 2003, v. 21, p. 335-376.
  14. Hertz C.J. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptors. Immunol. 2001, v. 166, p. 2444-2450.
  15. Means T.K. Human Toll-like receptors mediate cellular activation by M. tuberculosis. Immunol. 1999, v. 163, p. 3920-3927.
  16. Beutler B. Inferences, questions and possibilities in Toll-like receptor signaling. Nature. 2004, v. 430, p. 257-263.
  17. Schnare M. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2001, v. 2, p. 947-950.
  18. Sallusto F. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immun. 1998, v. 28, p. 2760-2769.
  19. Cella M., Engering A. Long-lived peptide MHC class II complexes induced in dendritic cells by inflammatory stimuli. Nature. 1997, v. 388, p. 782-787.
  20. Liu Y-J., Kanzler H., Gilliet V. Dendritic cell lineage, plasticity and cross-regulation. Nature Immunol. 2001, v. 2, p. 585-589.
  21. Кузнецов В.П., Караулов А.В. Механизмы терапевтического действия и тактика иммунокоррекции. Интернационал. журн. иммунореабилитации. 1998 № 10, с. 66-74.
  22. Paquette R.L. Hsu N.C. Interferon alfa and granulocyte/ macrophage-colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. Leukocyte Biol. 1998, v. 64, p. 358-367.
  23. Santini M.S. A new type I interferon-mediated pathway for the rapid differentiation of monocytes into highly active dendritic cells. Stem Cells. 2003, v. 21, p. 357-362.
  24. Obermaier B., Dauer M., Pohl K. Maturation of dendritic cells from monocytes within 48 hours: a new strategy for dendritic cells generation in vitro. Abstracts of 7th International Symposium on dendritic cells. Bamberg, Germany. 2002, p. 127.
  25. Гусакова Н.В., Москалева Е.Ю., Родина А.В. Характеристика дендритных клеток человека. Мол. Мед. 2004, № 2, с. 39-44.
  26. Navarette C.V., Gomes J., Borras F.E. Cord blood dendritic cells: subsets, functional characteristics and in vitro generation. Leuk. Lymphoma. 2003, v. 44, p. 923-928.
  27. Banchereau J., Palucka A. K. Dendritic cells as therapeutic vaccines against cancer. Nature Rev. Immunol. 2005, v. 5, р. 296-306.
  28. Vicari A.P., Caux C., Trinchieri G. et al. Tumour escape from immune surveillance through dendritic cells inactivation. Semin.Cancer Biol. 2002, v. 12, p. 33-42.
  29. Rosenberg S.A., De Vita T. , Hellman S. Principles of cancer management: biologic therapy. Cancer. 1997, chapter 1, p. 349-373.
  30. Kalergis A.M., Raveth J.V. Inducing tumor immunity through the selective engagement of activating Fc receptors on dendritic cells. J. Exp.Med. 2002, v. 195, p. 1653-1659.
  31. Paczensny S. Expansion of melanoma-specific cytolytic CD8+ T-cell precursors in patients with metastatic melanoma. J. Exp. Med. 2004, v.199, p. 1503-1511.
  32. Ralph M. Steiman, Banchereau J. Taking dendritic cells into medicine. Nature. 2007, v. 449, p. 419-426.
  33. Reid C.D. Dendritic cells and immunotherapy for malignant disease. Br. J. Haemot. 2001, v. 112, p. 874-887.
  34. Colino J., Snapper C.M. Dendritic cells, new tools for vaccination. Microbes and infection. 2003, v. 5, p. 311-319.
  35. Siegal F. P. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999, v. 284, p. 1835-1837.
  36. Cjlonna M., Krug A., Cella M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol. 2002, v. 14, p. 373-379.
  37. Lucas M., Oberle K. Dendritic cells prime natural killer cells by trans-presenting interleykin 15. Immunity. 2007, v. 26, p. 503-517.
  38. De Vries. Effective migration of antigen-pulsed dendritic cells to lymth nodes in melanoma patients is determined by their maturation state. Cancer Res. 2003, v. 63, p. 12-17.
  39. Thery C., Zitvogel L., Amigorena S. et al. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002, v. 2, p. 569-579.
  40. Dalod M. Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med., 2002, № 195, р. 517-528.
  41. Albert M.L., Sauter B., Bhardway N. et al. Dendritic cells acquire antigen from apoptotic cells and induce class I -restricted CTLs. Nature. 1998, v. 392, p. 86-89.
  42. Cyster J.G. Chemokines and the homing of dendritic cells to the T-cell areas of lymphoid organs. Nature Immunol. 2000. v. 203, p. 630-638.
  43. Probst H.C., Van Den Boek. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J. Immunology. 2005, No. 174, p. 3920-3924.
  44. Trumpfheller C. Intensified and protective CD4+ T-cell immunity at a mucosal surface after a single dose of antidendritic cell HIV gag fusion antibody vaccine. J. Exp.Med. 2006, v. 203, p. 607-617.
  45. Soares H. A subset of dendritic cells induces CD4+ T-cells to produce IFN-gamma by an IL-12 independent but CD70-dependent mechanism in vivo. J.Exp.Med. 2007, v. 204, p. 1095-1106.
  46. Lowes M.A. Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psorias. Proc. Natl Acad. Sci USA. 2005, No. 102, p. 19057-19062.
  47. Tarbell K.V. DC-expanded, islet-specific regulatory T-cells restore normoglykemia in diabetic NOD mice. J. Exp. Med. 2007, v. 204, p. 191-201.
  48. Lambrecht B.N. Taking ourbreath away: dendritic cells in the pathogenesis of asthma. Nature Rev. Immunol. 2003, v. 3, p. 994-1003.
  49. Евдокимова Т.А., Огородова Л.М. Атопическое воспаление при бронхиальной астме, сочетанной с описторхозом у детей. Акт. пробл. инфектол. паразитол. 2001, № 1, с. 82.
  50. Огородова Л.М., Козина О.В., Раенко В.Ф., Ломан Э.А. Сравнительная характеристика содержания IgE у детей с атопическими заболеваниями, протекающими на фоне персистирующих инфекций. Аллергология. 2005, № 1, с. 13-17.
  51. Огородова Л.М., Кобякова О.С., Фрейдин М.Б. Клинико-генетический анализ изменчивости уровня ИЛ-5 у больных бронхиальной астмой. Сб. научн. тр. ТНЦ СО РАМН. Томск, СибГМУ. 2001, с. 66-68.
  52. Akdis C. A., Joss A., Akdis M., Blaser K. Mechanism of IL-10-induced T cell inactivation in allergic inflammation and normal response to allergens. Int. Arch. Allergy Immunol. 2001, v. 124, p. 180.
  53. Ebner C., Siemann U., Bohle B., Willhiem M. et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p1, a major grass pollen allergen. Clin. Exp. Allergy. 1997, v. 27, p. 1007.
  54. Wu K., Bi Y., Sun K. et al. Suppression of allergic inflammation by allergen-DNA-modified dendritic cells depends on the induction of Foxp3+ Regulatory T. cells. Scand J. Immunol. 2008, v. 67(2), p. 140-151.
  55. Blattman J.N. Cancer immunotherapy: a treatment for the masses. Science. 2004, v. 305, p. 200-205.

Statistics

Views

Abstract - 12

PDF (Russian) - 1

PlumX

Article Metrics

Metrics Loading ...

Dimensions


Copyright (c) 2009 Russian Allergological Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies