Skin microbiome and modern treatment options for complicated forms of atopic dermatitis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, atopic dermatitis is considered a systemic multifactorial disease, and its development involves various factors, mainly genetic disorders, epidermal barrier impairment, microbiome changes, allergen sensitization, and nonspecific environmental factors.

The microbial skin barrier in patients with atopic dermatitis has its characteristics due to changes in the species composition of the microflora toward contamination by conditionally pathogenic microorganisms, which have a significant effect on the disease course, leading to secondary skin infection and exacerbations. Microbes and allergens percutaneously penetrate the disrupted epidermal barrier, leading to sensitization to various proteins, including bacterial and fungal proteins, characterizing the t2 immune response.

The treatment of atopic dermatitis aims at achieving long-term control over the disease through an integrated approach, including external and systemic therapy.

Full Text

Restricted Access

About the authors

Daria D. Chernushevich

National Research Center ― Institute of Immunology

Author for correspondence.
Email: chernushevitchdasha@yandex.ru
ORCID iD: 0000-0003-0006-2773
SPIN-code: 2497-5608
Россия, Moscow

Olga G. Elisyutina

National Research Center ― Institute of Immunology; Peoples’ Friendship University of Russia

Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-code: 9567-1894

MD, Dr. Sci. (Med)

Россия, Moscow; Moscow

Elena S. Fedenko

National Research Center ― Institute of Immunology

Email: efedks@gmail.com
ORCID iD: 0000-0003-3358-5087
SPIN-code: 5012-7242

MD, Dr. Sci. (Med)

Россия, Moscow

References

  1. Atopic dermatitis. Draft clinical guidelines. The Russian Association of Allergology and Clinical Immunology; 2023. (In Russ). Available from: https://raaci.ru/dat/pdf/project_AtD.pdf. Accessed: 16.01.2023
  2. Coates M, Lee MJ, Norton D, MacLeod AS. The skin and intestinal microbiota and their specific innate immune systems. Front Immunol. 2019;10:2950. doi: 10.3389/fimmu.2019.02950
  3. Ali SM, Yosipovitch G. Skin pH: From basic science to basic skin care. Acta Derm Venereol. 2013;93(3):261–267. doi: 10.2340/00015555-1531
  4. Fluhr JW, Kao J, Jain M, et al. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117(1):44–51. doi: 10.1046/j.0022-202x.2001.01399.x
  5. Khaitov RM. Immunologiya: uchebnik. 4th revised and updated. Moscow: GEOTAR-Media; 2021. 520 р. (In Russ).
  6. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008;122(2): 261–266. doi: 10.1016/j.jaci.2008.03.027
  7. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol. 2012;7:99–122. doi: 10.1146/annurev-pathol-011811-132421
  8. Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. Microbiome. 2021;9(1):125. doi: 10.1186/s40168-021-01062-5
  9. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–155. doi: 10.1038/nrmicro.2017.157
  10. Pennisi E. Body’s hardworking microbes get some overdue respect. Science. 2010;330(6011):1619. doi: 10.1126/science.330.6011.1619
  11. Kong HH, Segre JA. Skin microbiome: Looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–939. doi: 10.1038/jid.2011.417
  12. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944
  13. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19(6):296–302. doi: 10.1159/000094670
  14. Myles IA, Reckhow JD, Williams KW, et al. A method for culturing Gram-negative skin microbiota. BMC Microbiol. 2016;16:60. doi: 10.1186/s12866-016-0684-9
  15. Cassir N, Thomas G, Hraiech S, et al. Chlorhexidine daily bathing: Impact on health care-associated infections caused by gram-negative bacteria. Am J Infect Control. 2015;43(6):640–643. doi: 10.1016/j.ajic.2015.02.010
  16. Oh J, Byrd AL, Park M; NISC Comparative Sequencing Program. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854–866. doi: 10.1016/j.cell.2016.04.008
  17. Gupta AK, Kohli Y, Summerbell RC. Molecular differentiation of seven Malassezia species. J Clin Microbiol. 2000;38(5):1869–1875. doi: 10.1128/JCM.38.5.1869-1875.2000
  18. Oh J, Byrd AL, Deming C, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi: 10.1038/nature13786
  19. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680. doi: 10.1126/scitranslmed.aah4680
  20. Gaitanis G, Tsiouri G, Spyridonos P, et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr Dermatol. 2019;36(4):460–465. doi: 10.1111/pde.13829
  21. Kim BE, Leung DY. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207–215. doi: 10.4168/aair.2018.10.3.207
  22. Yoshida T, Beck LA, de Benedetto A. Skin barrier defects in atopic dermatitis: From old idea to new opportunity. Allergol Int. 2022;71(1):3–13. doi: 10.1016/j.alit.2021.11.006
  23. Leung DI. Staphylococcus aureus in atopic dermatitis. In: Reitamo S, Luger TA, Steinhoff M, eds. Textbook of atopic dermatitis. London: Informa Healthcare; 2008. Р. 59–68.
  24. Lin YT, Wang CT, Chiang BL. Role of bacterial pathogens in atopic dermatitis. Clin Rev Allergy Immunol. 2007;33(3):167–177. doi: 10.1007/s12016-007-0044-5
  25. Byrd AL, Deming C, Cassidy SK, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. doi: 10.1126/scitranslmed.aal4651
  26. Chng KR, Tay AS, Li C, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. doi: 10.1038/nmicrobiol.2016.106
  27. Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109(21):8334–8339. doi: 10.1073/pnas.1205624109
  28. Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: 10.1038/nature12655
  29. Niebuhr M, Gathmann M, Scharonow H, et al. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. Infect Immun. 2011;79(4):1615–1622. doi: 10.1128/IAI.00958-10
  30. Kaesler S, Skabytska Y, Chen KM, et al. Staphylococcus aureus-derived lipoteichoic acid induces temporary T-cell paralysis independent of Toll-like receptor 2. J Allergy Clin Immunol. 2016;138(3):780–790.e6. doi: 10.1016/j.jaci.2015.11.043
  31. Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136(11):2192–2200. doi: 10.1016/j.jid.2016.05.127
  32. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6): 1184–90.e3. doi: 10.1016/j.jaci.2010.09.015
  33. Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to Staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92(3):1374–1380. doi: 10.1172/JCI116711
  34. Reginald K, Westritschnig K, Werfel T, et al. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients. Clin Exp Allergy. 2011;41(3):357–369. doi: 10.1111/j.1365-2222.2010.03655.x
  35. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol. 2018;26(6):484–497. doi: 10.1016/j.tim.2017.11.008
  36. Simpson EL. Comorbidity in atopic dermatitis. Curr Dermatol Rep. 2012;1(1):29–38. doi: 10.1007/s13671-011-0003-5
  37. Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of Malassezia spp. in atopic dermatitis. J Clin Med. 2015; 4(6):1217–1228. doi: 10.3390/jcm4061217
  38. Roesner LM, Werfel T. Autoimmunity (or not) in atopic dermatitis. Front Immunol. 2019;10:2128. doi: 10.3389/fimmu.2019.02128
  39. Badloe FM, de Vriese S, Coolens K, et al. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy. 2020;10:34. doi: 10.1186/s13601-020-00338-7
  40. Pellefigues C. IgE autoreactivity in atopic dermatitis: Paving the road for autoimmune diseases? Antibodies (Basel). 2020;9(3):47. doi: 10.3390/antib9030047
  41. Sircar G, Bhowmik M, Sarkar RK, et al. Molecular characterization of a fungal cyclophilin allergen Rhi o 2 and elucidation of antigenic determinants responsible for IgE-cross-reactivity. J Biol Chem. 2020;295(9):2736–2748. doi: 10.1074/jbc.RA119.011659
  42. Agaphonova EE, Dvoryankova NV, Dobriyan ZF, Korsunskaya IM. Therapy of chronic dermatoses, complicated by Candida infection. Terra Medica. 2006;(1):34–35. (In Russ).
  43. Wong IT, Tsuyuki RT, Cresswell-Melville A, et al. Guidelines for the management of atopic dermatitis (eczema) for pharmacists. Can Pharm J (Ott). 2017;150(5):285–297. doi: 10.1177/1715163517710958
  44. Silina LV, Shvarts NE. Skin microbiome in case of microbial eczema. Russ J Clin Dermatol Venereol. 2019;18(1):49–54. (In Russ.). doi: 10.17116/klinderma20191801149
  45. Khaldin AA, Zhukova OV. Open randomized controlled trial to study the effectiveness and safety of domestic (Russian) versus foreign multicomponent topical preparations for the treatment of eczema. Russ J Clin Dermatol Venereol. 2019;18(3):327–337. (In Russ.). doi: 10.17116/klinderma201918031327
  46. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–859. doi: 10.1101/gr.131029.111
  47. Roberts JK, Moore CD, Ward RM, et al. Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther. 2013;345(2):308–316. doi: 10.1124/jpet.112.202556
  48. Guidance on Prescribing. In: British National Formulary No 60. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2010.
  49. Samtsov AV, Khairutdinov VR, Belousova IE. Etiopathogenetic therapy of inflammatory dermatoses. Bulletin of Dermatology and Venereology. 2018;94(2):78–83. (In Russ). doi: 10.25208/0042-4609-2018-94-2-78-83
  50. Kozlov SN, Kozlov RS. Modern antimicrobial chemotherapy: A guide for physicians. Moscow: Meditsinskoe informatsionnoe agentstvo; 2017. 397 р. (In Russ).
  51. Filimonkova NN, Bahlykova EA. Combined topical therapy of chronic dermatoses. Vestnik Dermatologii i Venerologii. 2015;(3): 147–152. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2023



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies