THE STUDY OF BALANCE OF Th1/Th2 IMMUNE RESPONSE DURING VIRUS-INDUCED ASTHMA EXACERBATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Bronchial asthma (BA) is the most common chronic disease of the airways affecting up to 18% of population in different regions of the world. Respiratory viruses such as rhinoviruses and respiratory syncytial virus (RSV) are the main causes of BA exacerbations. Current data demonstrate the major role of Th1- and Th2-response and corresponding cytokines in the development of infectious and allergic inflammation of the airways. At the same time, there are no data available concerning changes in Th1/Th2-balance during virus-induced asthma exacerbations. In the current study, we evaluated Th1/Th2-balance using developed mouse model of RSV-induced BA exacerbation. In was demonstrated, that RSV infection does not increase Th2-immune response but enhances Th1-response that shifts Th1/Th2-balance towards Th1.

Full Text

Restricted Access

About the authors

A R Gaisina

Email: ar.gaysina@nrcii.ru
Institute of Immunology Moscow, Russia

I P Shilovskiy

Institute of Immunology Moscow, Russia

A A Nikonova

Institute of Immunology Mechnikov Research Institute for Vaccines and Sera Moscow, Russia

M S Sundukova

Institute of Immunology Moscow, Russia

M A Zaretskaia

Institute of Immunology Moscow, Russia

V V Smirnov

Institute of Immunology First Moscow state medical university named after I.M. Sechenov Moscow, Russia

O Y Kamishnikov

Institute of Immunology Moscow, Russia

A S Ivanova

Institute of Immunology Moscow, Russia

M R Khaitov

Institute of Immunology Moscow, Russia

References

  1. Papadopoulos N.G., Christodoulou I., Rohde G. Viruses and bacteria in acute asthma exacerbations GA2LEN-DARE systematic review. Allergy. 2011, v. 4, c. 458-468.
  2. Agache I., Akdis C., Jutel M., Virchow J.C. Untangling asthma phenotypes and endotypes. Allergy. 2012, v. 7, c. 835-846.
  3. Chipps B.E., Zeiger R.S., Borish L. et al. Key findings and clinical implications from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. The Journal of allergy and clinical immunology. 2012, v. 2, p. 332-342.
  4. Jarvis D., Newson R., Lotvall J. et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy. 2012, v. 1, p. 91-98.
  5. Masoli M., Fabian D., Holt S., Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004, v. 5, p. 469-478.
  6. Edwards M.R., Bartlett N.W., Hussell T et al. The microbiology of asthma. Nature Reviews Microbiology. 2012, v. 7, p. 459-471.
  7. Царев С.В., Хаитов М.Р. Роль респираторных вирусов при бронхиальной астме. Рус. мед. журн. 2009, № 2, c. 136-139.
  8. Jackson D.J., Gangnon R.E., Evans M.D. et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. American Journal of Respiratory and Critical Care Medicine. 2008, v. 7, p. 667-672.
  9. Hall C.B. The burden of respiratory syncytial virus infection in young children. The New England journal of medicine. 2009, v. 6, p. 588-598.
  10. Kusel M.M., de Klerk N.H., Kebadze T. et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J. Allergy Clin. Immunol. 2007, v. 5, p. 1105-1110.
  11. Schaik S.M. van, Obot N., Enhorning G. et al. Role of interferon gamma in the pathogenesis of primary respiratory syncytial virus infection in BALB/c mice. Journal of medical virology. 2000, v. 2, p. 257-266.
  12. Stein R.T., Sherrill D., Morgan W.J. et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet. 1999, v. 9178, p. 541-545.
  13. Thomsen S.F. Exploring the Association between Severe Respiratory Syncytial Virus Infection and Asthma. American Journal of Respiratory and Critical Care Medicine. 2009, v. 179, p. 1091-1097.
  14. Strachan D.P Family size, infection and atopy: the first decade of the " hygiene hypothesis". Thorax. 2000, v. 1, p. 2-10.
  15. Johnston N.W., Sebastian L., Johnston M.D. et al. The September epidemic of asthma exacerbations in children: A search for etiology. Journal of Allergy and Clinical Immunology. 2005, v. 1, p. 132-138.
  16. Johnston S.L., Pattemore P. K., Sanderson G. et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ (Clinical research ed.). 1995, v. 6989, p. 1225-1229.
  17. Nicholson K.G., Kent J., Ireland D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993, v. 6910, p. 982-986.
  18. Wark P.A., Johnston S.L., Moric I. et al. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur. Respir. J. 2002, v. 1, p. 68-75.
  19. Piedimonte G. Respiratory syncytial virus and asthma: speed-dating or long-term relationship? Current opinion in pediatrics. 2013, v. 3, p. 344-349.
  20. Busse W.W., Lemanske R.F., Gern J.E. Role ofviral respiratory infections in asthma and asthma exacerbations. Lancet. 2010, v. 9743, p. 826-834.
  21. Khaitov M.R., Shilovskiy I.P., Nikonova A.A. et al. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Human gene therapy. 2014, v. 7, p. 642-650.
  22. Шиловский И.П., Бабахин А.А., Прозорова М.С. и соавт. Разработка безадъювантной модели хронической бронхиальной астмы у мышей. Рос. иммунолог. журн. 2014, v. 17, c. 638-641.
  23. Ennis D.P., Cassidy J.P., Mahon B.P. Acellular Pertussis Vaccine Protects against Exacerbation of Allergic Asthma Due to Bordetella pertussis in a Murine Model Acellular Pertussis Vaccine Protects against Exacerbation of Allergic Asthma Due to Bordetella pertussis in a Murine Model. Clinical and Vaccine Immunology. 2005, v. 2, p. 409.
  24. Крючков Н.А., Бабахин А.А., Хаитов М.Р. Моделирование бронхиальной астмы у лабораторных мышей: общие принципы и значение. Физиология и патология иммунной системы. 2008, v. 2, p. 3-7.
  25. Oettgen H.C., Martin T.R., Wynshaw-Boris A. et al. Active anaphylaxis in IgE-deficient mice. Nature. 1994, v. 6488, p. 367-370.
  26. Miyajima I., Dombrowicz D., Martin TR. et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc yRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. The Journal of clinical investigation. 1997, v. 5, p. 901-914.
  27. Mäkelä M.J., Tripp R., Dakhama A. et al. Prior airway exposure to allergen increases virus-induced airway hyperresponsiveness. Journal of Allergy and Clinical Immunology. 2003, v. 5, p. 861-869.
  28. Schaik S.M. van, Obot N., Enhorning G. et al. Role of interferon gamma in the pathogenesis of primary respiratory syncytial virus infection in BALB/c mice. Journal of medical virology. 2000, v. 2, p. 257-266.
  29. Barends M. Timing of infection and prior immunization with respiratory syncytial virus (RSV) in RSV-enhanced allergic inflammation. The Journal of infectious diseases. 2004, v. 10, p. 1866-1872.
  30. Liu B., Kimura Y. Respiratory syncytial virus protects against the subsequent development of Japanese cedar pollen-induced allergic responses. Journal of Medical Virology. 2007, v. 10, p. 1600-1605.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2016



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies