Atopic march: modern view on the problem and measures for prevention



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atopic dermatitis is one of the most common inflammatory skin diseases, affecting 10–21 % of the population and accounting for up to 50–60 % of allergic disorders. The classical concept of the atopic march suggests a sequential progression from atopic dermatitis in infancy to bronchial asthma in early childhood and allergic rhinitis in school-age children. However, recent data demonstrate that only 3.1 % of patients follow this strict sequence, while the majority exhibit a heterogeneous combination of atopic diseases, including food allergy and eosinophilic esophagitis.

The key mechanisms underlying the atopic march include epidermal barrier dysfunction (filaggrin mutations), transcutaneous allergen sensitization, systemic T2 inflammation, and genetic predisposition. Other contributing factors include microbiome disturbances, lifestyle factors, and environmental triggers.

Preventive strategies involve the use of emollients from birth, early introduction of allergenic foods (e.g., peanuts) to induce tolerance, microbiome modulation, and targeted therapies (e.g., dupilumab) aimed at suppressing interleukin 4/13-mediated inflammation. However, no universal approach exists, highlighting the need for personalized strategies tailored to individual immunological and genetic profiles.

Thus, the modern understanding of the atopic march has evolved from a linear model to a concept of multimorbidity, requiring a comprehensive approach to diagnosis, prevention, and treatment. Further research should focus on developing predictive biomarkers and individualized therapeutic algorithms.

Full Text

Restricted Access

About the authors

Alla O. Litovkina

National Research Center – Institute of Immunology Federal Medico-Biological Agency; Peoples’ Friendship University of Russia

Email: dr.litovkina@gmail.com
ORCID iD: 0000-0002-5021-9276
SPIN-code: 2337-7930
Россия, Moscow; Moscow

Evgeniy V. Smolnikov

National Research Center – Institute of Immunology Federal Medico-Biological Agency; Peoples’ Friendship University of Russia

Email: qweril2010@yandex.ru
ORCID iD: 0000-0003-1302-4178
SPIN-code: 4874-8100

MD

Россия, Moscow; Moscow

Olga G. Elisyutina

National Research Center – Institute of Immunology Federal Medico-Biological Agency; Peoples’ Friendship University of Russia

Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-code: 9567-1894

MD, Dr. Sci (Medicine)

Россия, Moscow; Moscow

Maria V. Khodzhava

National Research Center – Institute of Immunology Federal Medico-Biological Agency

Email: mchernobaeva@mail.ru
ORCID iD: 0009-0005-5140-1554
SPIN-code: 3046-8033

PhD, Cand. Sci. (Pharmacy)

Россия, Moscow

Elena S. Fedenko

National Research Center – Institute of Immunology Federal Medico-Biological Agency

Author for correspondence.
Email: efedks@gmail.com
ORCID iD: 0000-0003-3358-5087
SPIN-code: 5012-7242

MD, Dr. Sci. (Medicine), Professor

Россия, Moscow

References

  1. Elisyutina OG, Boldyreva MN, Rebrova OYu, Fedenko ES. AD endotypes evaluation with molecular-genetic analysis of local immune response. Russian Journal of Allergy. 2018;15(6):33–44. (In Russ) doi: 10.36691/RJA100 EDN: YWOTFJ
  2. Illi S, von Mutius E, Lau S, et al. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol. 2004;113(5):925–931. doi: 10.1016/j.jaci.2004.01.778
  3. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99–117. doi: 10.1016/j.anai.2009.10.002 EDN: NANURL
  4. Spergel JM, Mizoguchi E, Brewer JP, et al. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101(8):1614–1622. doi: 10.1172/JCI1647
  5. Ziyab AH, Hankinson J, Ewart S, et al. Epistasis between FLG and IL4R genes on the risk of allergic sensitization: results from two population-based birth cohort studies. Sci Rep. 2018;8(1):3221. doi: 10.1038/s41598-018-21459-x
  6. Paller AS, Spergel JM, Mina-Osorio P, Irvine AD. The atopic march and atopic multimorbidity: many trajectories, many pathways. J Allergy Clin Immunol. 2019;143(1):46–55. doi: 10.1016/j.jaci.2018.11.006 EDN: QVVJWK
  7. Hill DA, Grundmeier RW, Ramos M, Spergel JM. Eosinophilic esophagitis is a late manifestation of the allergic march. J Allergy Clin Immunol Pract. 2018;6(5):1528–1533. doi: 10.1016/j.jaip.2018.05.010 EDN: IRIOYV
  8. Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26–35. doi: 10.1016/j.jaci.2018.11.015. Erratum in: J Allergy Clin Immunol. 2019;143(4):1660. doi: 10.1016/j.jaci.2019.01.022
  9. Davis DMR, Drucker AM, Alikhan A, et al. American Academy of Dermatology Guidelines: awareness of comorbidities associated with atopic dermatitis in adults. J Am Acad Dermatol. 2022;86(6):1335–1336.e18. doi: 10.1016/j.jaad.2022.01.009 EDN: VGTWUA
  10. Maintz L, Bieber T, Simpson HD, Demessant-Flavigny AL. From skin barrier dysfunction to systemic impact of atopic dermatitis: implications for a precision approach in dermocosmetics and medicine. J Pers Med. 2022;12(6):893. doi: 10.3390/jpm12060893 EDN: EVFIDM
  11. Brożek JL, Bousquet J, Agache I, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–958. doi: 10.1016/j.jaci.2017.03.050 EDN: YDTHOX
  12. Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469–499. doi: 10.1146/annurev-immunol-051116-052215
  13. Hill DA, Spergel JM. The atopic march: critical evidence and clinical relevance. Ann Allergy Asthma Immunol. 2018;120(2):131–137. doi: 10.1016/j.anai.2017.10.037 EDN: YGMTVB. Erratum in: Ann Allergy Asthma Immunol. 2018;120(4):451. doi: 10.1016/j.anai.2018.02.033
  14. Han H, Roan F, Johnston LK, et al. IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol. 2018;11(2):394–403. doi: 10.1038/mi.2017.61. Erratum in: Mucosal Immunol. 2018;11(2):578. doi: 10.1038/mi.2017.82
  15. Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol. 2013;132(4):789–801. doi: 10.1016/j.jaci.2013.07.046
  16. Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752–1757. doi: 10.1038/ng.3985 EDN: YIIBOS
  17. Brough HA, Liu AH, Sicherer S, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164–170. doi: 10.1016/j.jaci.2014.10.007
  18. Du Toit G, Sayre PH, Roberts G, et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J Allergy Clin Immunol. 2018;141(4):1343–1353. doi: 10.1016/j.jaci.2017.09.034
  19. Broderick C, Ziehfreund S, van Bart K, et al. Biomarkers associated with the development of comorbidities in patients with atopic dermatitis: a systematic review. Allergy. 2023;78(1):84–120. doi: 10.1111/all.15578 EDN: CIBXBM
  20. Depner M, Taft DH, Peschel S, et al. The Janus face of Bifidobacterium in the development of atopic eczema: a role for compositional maturation. Pediatr Allergy Immunol. 2025;36(2):e70041. doi: 10.1111/pai.70041
  21. Zhang GQ, Hu HJ, Liu CY, et al. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95(8):e2562. doi: 10.1097/MD.0000000000002562 EDN: XAIJEI
  22. Nieto A, Mazón A, Nieto M, et al. Bacterial mucosal immunotherapy with MV130 prevents recurrent wheezing in children: a randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med. 2021;204(4):462–472. doi: 10.1164/rccm.202003-0520OC EDN: VQMLQP
  23. Scarpone R, Kimkool P, Ierodiakonou D, et al. Timing of allergenic food introduction and risk of immunoglobulin E-mediated food allergy: a systematic review and meta-analysis. JAMA Pediatr. 2023;177(5):489–497. doi: 10.1001/jamapediatrics.2023.0142 EDN: NZSBKB
  24. Halken S, Muraro A, de Silva D, et al. EAACI guideline: preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol. 2021;32(5):843–858. doi: 10.1111/pai.13496 EDN: YLQDKD
  25. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288(8):963–972. doi: 10.1001/jama.288.8.963
  26. Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818–823. doi: 10.1016/j.jaci.2014.08.005 EDN: MYEGJJ
  27. Horimukai K, Morita K, Narita M, et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):824–830.e6. doi: 10.1016/j.jaci.2014.07.060 EDN: ENQISW
  28. Lowe AJ, Su JC, Allen KJ, et al. A randomized trial of a barrier lipid replacement strategy for the prevention of atopic dermatitis and allergic sensitization: the PEBBLES pilot study. Br J Dermatol. 2018;178(1):e19–e21. doi: 10.1111/bjd.15747
  29. Skjerven HO, Lie A, Vettukattil R, et al. Early food intervention and skin emollients to prevent food allergy in young children (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet. 2022;399(10344):2398–2411. doi: 10.1016/S0140-6736(22)00687-0 EDN: QTDSJX
  30. Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020;395(10228):962–972. doi: 10.1016/S0140-6736(19)32984-8 EDN: XGNVDR
  31. Shen J, Liu Y, Wang X, et al. A comprehensive review of health-benefiting components in rapeseed oil. Nutrients. 2023;15(4):999. doi: 10.3390/nu15040999 EDN: JGKFCV
  32. Guéniche A, Dahel K, Bastien P, et al. Vitreoscilla filiformis bacterial extract to improve the efficacy of emollient used in atopic dermatitis symptoms. J Eur Acad Dermatol Venereol. 2008;22(6):746–747. doi: 10.1111/j.1468-3083.2007.02428.x
  33. Gueniche A, Knaudt B, Schuck E, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 2008;159(6):1357–1363. doi: 10.1111/j.1365-2133.2008.08836.x
  34. Mainzer C, Le Guillou M, Vyumvuhore R, et al. Clinical efficacy of oligofructans from Ophiopogon japonicus in reducing atopic dermatitis flare-ups in Caucasian patients. Acta Derm Venereol. 2019;99(10):858–864. doi: 10.2340/00015555-3224
  35. Fedenko ES, Zakharova IN, Zaytseva OV, et al. Practical issues of emollient use in winter for patients with atopic dermatitis: expert resolution. Russian Journal Allergy. 2024;21(4):520–532. (In Russ.) doi: 10.36691/RJA16981 EDN: NQXFVF
  36. Litovkina AO, Smolnikov EV, Elisyutina OG, Fedenko ES. The role of modern emollients in prophylaxis of atopic dermatitis exacerbation during pollination season. Russian Journal of Allergy. 2023;20(1):41–51. (In Russ.) doi: 10.36691/RJA4136 EDN: UTDKEP
  37. Schneider L, Hanifin J, Boguniewicz M, et al. Study of the atopic march: development of atopic comorbidities. Pediatr Dermatol. 2016;33(4):388–398. doi: 10.1111/pde.12867
  38. Yamamoto-Hanada K, Kobayashi T, Mikami M, et al. Enhanced early skin treatment for atopic dermatitis in infants reduces food allergy. J Allergy Clin Immunol. 2023;152(1):126–135. doi: 10.1016/j.jaci.2023.03.008 EDN: EASIAX
  39. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Атопический дерматит. Единый портал клинических рекомендаций. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/265_3#doc_b Дата обращения: 28.07.2025.
  40. Yepes-Nuñez JJ, Guyatt GH, Gómez-Escobar LG, et al. Allergen immunotherapy for atopic dermatitis: systematic review and meta-analysis of benefits and harms. J Allergy Clin Immunol. 2023;151(1):147–158. doi: 10.1016/j.jaci.2022.09.020 EDN: LCXFIQ
  41. Kristiansen M, Dhami S, Netuveli G, et al. Allergen immunotherapy for the prevention of allergy: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2017;28(1):18–29. doi: 10.1111/pai.12661
  42. Batard T, Taillé C, Guilleminault L, et al. Allergen immunotherapy for the prevention and treatment of asthma. Clin Exp Allergy. 2025;55(2):111–141. doi: 10.1111/cea.14575 EDN: DKKKQJ
  43. Alviani C, Roberts G, Mitchell F, et al. Primary prevention of asthma in high-risk children using HDM SLIT: assessment at age 6 years. J Allergy Clin Immunol. 2020;145(6):1711–1713. doi: 10.1016/j.jaci.2020.01.048 EDN: VWBMHO
  44. Durham SR, Shamji MH. Allergen immunotherapy: past, present and future. Nat Rev Immunol. 2023;23(5):317–328. doi: 10.1038/s41577-022-00786-1 EDN: SOCFSC
  45. Guo BC, Wu KH, Chen CY, et al. Advancements in allergen immunotherapy for the treatment of atopic dermatitis. Int J Mol Sci. 2024;25(2):1316. doi: 10.3390/ijms25021316 EDN: PGQWPU
  46. Feng M, Zeng X, Su Q, et al. Allergen immunotherapy-induced immunoglobulin G4 reduces basophil activation in house dust mite-allergic asthma patients. Front Cell Dev Biol. 2020;8:30. doi: 10.3389/fcell.2020.00030 EDN: PWGGKN
  47. Lutzu N, Favale A, Demurtas M, et al. Eosinophilic esophagitis in the “atopic march”: dupilumab as an “umbrella” strategy for multiple coexisting atopic diseases. Front Med (Lausanne). 2025;11:1513417. doi: 10.3389/fmed.2024.1513417 EDN: HCRIIW
  48. Napolitano M, Maffei M, Patruno C, et al. Dupilumab effectiveness for the treatment of patients with concomitant atopic dermatitis and chronic rhinosinusitis with nasal polyposis. Dermatol Ther. 2021;34(6):e15120. doi: 10.1111/dth.15120 EDN: SUJZEJ
  49. Caminati M, Maule M, Benoni R, et al. Dupilumab efficacy on asthma functional, inflammatory, and patient-reported outcomes across different disease phenotypes and severity: a real-life perspective. Biomedicines. 2024;12(2):390. doi: 10.3390/biomedicines12020390 EDN: BWHIBK

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © ABV-press,



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies