Epigenetics and its role in development and regulation of Allergy-A systematic review



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

ABSTRACT

Background- Epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNAs have more recently been highlighted as important regulatory elements of gene expression in allergic diseases. Such mechanisms mediate interactions between predisposing genetic determinants and environmental exposures, with subsequent influences on immune response as well as on susceptibility to conditions such as asthma, allergic rhinitis, atopic dermatitis, and food allergies.

Methods- This systematic review integrated evidence from studies exploring the role of epigenetic modifications in allergic diseases. The databases were searched systematically and relevant studies as per predefined PECOS criteria were included. All data regarding epigenetic mechanisms, the target loci involved, environmental influences, and allergic outcomes were extracted and analyzed. The studies were evaluated for risk of bias using the RoB 2.0 and ROBINS-I tools, and the certainty of evidence was appraised using the GRADE framework.

Results- It was observed that DNA methylation at such loci, including FOXP3 and IL-4Ra, was invariably associated with immune dysregulation in allergic diseases across the 11 studies included. Exposure to pollutants and microbial exposure has shown associations with alterations in epigenetic profiles that have resulted in significant impacts on immune tolerance and allergic inflammation. Quantitative results: in specific immunotherapy settings, 95% suppression of effector T-cell proliferation (p < 0.0001), and identification of 956 CpG sites associated with the risk of allergic rhinitis (FDR < 5%). The studies together showed that epigenetic modifications are central to the pathogenesis of allergic diseases and may be used as biomarkers and therapeutic targets.

Conclusion- This review highlighted how epigenetics played a crucial role in the development and regulation of allergic diseases and underlined the interactions between these entities and environmental exposures. Findings indicated that epigenetic mechanisms promise a wide potential in precision medicine, mainly concerning biomarker discovery and treatment stratification. However, study methodology heterogeneity and variability of results should be pursued further for homogenization of methodologies and thus increasing the applicability in clinics.

Keywords- Epigenetics, DNA methylation, allergic diseases, immune regulation, environmental exposures, biomarkers, precision medicine.

 

 

Full Text

Restricted Access

About the authors

Dr Sanjeev Kumar Jain

Teerthanker Mahaveer Medical College , Moradabad

Email: jainsanjeevkumar77@gmail.com
ORCID iD: 0000-0002-9609-5950

MD , Department Of Anatomy

Professor, Department of Anatomy , TMMC & RC , Moradabad , UP , India

Dr Sonika Sharma

Teerthanker Mahaveer Medical College , Moradabad

Author for correspondence.
Email: soniyasharma19922@gmail.com
ORCID iD: 0009-0006-8821-2068

PhD

Associate Professor , Deptt of Anatomy , TMMC & RC , Moradabad , UP

Dr Vinod Kumar Singh

Teerthanker Mahaveer Medical College , Moradabad

Email: drvinodkumarsingh85@gmail.com
ORCID iD: 0000-0003-2480-1753

MD , Department of General Medicine

Professor , Deptt of Gen Medicine , TMMC & RC , Moradabad , UP

Dr Reena Rani

Teerthanker Mahaveer Medical College & Hospital , Moradabad

Email: reenarani.rmch@gmail.com
ORCID iD: 0009-0004-9548-5078

MD , Department of Biochemistry

Индия, Associate Professor , Department Of Biochemistry ,TMMC & RC , Moradabad , UP , India

References

  1. Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients. 2021 Feb 25;13(3):724. doi: 10.3390/nu13030724. PMID: 33668787; PMCID: PMC7996340.
  2. Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci. 2021 Feb 27;22(5):2412. doi: 10.3390/ijms22052412. PMID: 33673725; PMCID: PMC7957649.
  3. Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. Adv Exp Med Biol. 2020;1253:3-55. doi: 10.1007/978-981-15-3449-2_1. PMID: 32445090.
  4. Agache I, Cojanu C, Laculiceanu A, Rogozea L. Genetics and epigenetics of allergy. Curr Opin Allergy Clin Immunol. 2020 Jun;20(3):223-232. doi: 10.1097/ACI.0000000000000634. PMID: 32073434.
  5. Cañas JA, Núñez R, Cruz-Amaya A, Gómez F, Torres MJ, Palomares F, Mayorga C. Epigenetics in Food Allergy and Immunomodulation. Nutrients. 2021 Dec 1;13(12):4345. doi: 10.3390/nu13124345. PMID: 34959895; PMCID: PMC8708211.
  6. Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol. 2020 Feb;20(1):48-55. doi: 10.1097/ACI.0000000000000598. PMID: 31633569.
  7. Clausing ES, Tomlinson CJ, Non AL. Epigenetics and social inequalities in asthma and allergy. J Allergy Clin Immunol. 2023 Jun;151(6):1468-1470. doi: 10.1016/j.jaci.2023.01.032. Epub 2023 Feb 18. PMID: 36804452.
  8. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020 Jun;145(6):1499-1509. doi: 10.1016/j.jaci.2020.04.010. PMID: 32507228; PMCID: PMC7270816.
  9. Choi BY, Han M, Kwak JW, Kim TH. Genetics and Epigenetics in Allergic Rhinitis. Genes (Basel). 2021 Dec 17;12(12):2004. doi: 10.3390/genes12122004. PMID: 34946955; PMCID: PMC8700872.
  10. Agache I, Eguiluz-Gracia I, Cojanu C, Laculiceanu A, Del Giacco S, Zemelka-Wiacek M, Kosowska A, Akdis CA, Jutel M. Advances and highlights in asthma in 2021. Allergy. 2021 Nov;76(11):3390-3407. doi: 10.1111/all.15054. Epub 2021 Aug 29. PMID: 34392546.
  11. Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol. 2020 Feb;42(1):43-60. doi: 10.1007/s00281-019-00777-w. Epub 2020 Feb 14. PMID: 32060620; PMCID: PMC7066293.
  12. Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther. 2023 Mar 24;8(1):138. doi: 10.1038/s41392-023-01344-4. PMID: 36964157; PMCID: PMC10039055.
  13. Bélanger É, Laprise C. Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? Int J Mol Sci. 2021 Aug 19;22(16):8921. doi: 10.3390/ijms22168921. PMID: 34445627; PMCID: PMC8396248.
  14. Lal D, Brar T, Ramkumar SP, Li J, Kato A, Zhang L. Genetics and epigenetics of chronic rhinosinusitis. J Allergy Clin Immunol. 2023 Apr;151(4):848-868. doi: 10.1016/j.jaci.2023.01.004. Epub 2023 Feb 14. PMID: 36797169.
  15. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021 Mar 29;372:n160. doi: 10.1136/bmj.n160. PMID: 33781993; PMCID: PMC8005925.
  16. Igelström E, Campbell M, Craig P, Katikireddi SV. Cochrane's risk of bias tool for non-randomized studies (ROBINS-I) is frequently misapplied: A methodological systematic review. J Clin Epidemiol. 2021 Dec;140:22-32. doi: 10.1016/j.jclinepi.2021.08.022. Epub 2021 Aug 23. PMID: 34437948; PMCID: PMC8809341.
  17. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 Aug 28;366:l4898. doi: 10.1136/bmj.l4898. PMID: 31462531.
  18. Hew KM, Walker AI, Kohli A, Garcia M, Syed A, McDonald-Hyman C, Noth EM, Mann JK, Pratt B, Balmes J, Hammond SK, Eisen EA, Nadeau KC. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells. Clin Exp Allergy. 2015 Jan;45(1):238-48. doi: 10.1111/cea.12377. PMID: 25048800; PMCID: PMC4396982.
  19. Martino DJ, Joo SE, Saffery R, Prescott S. Basic and clinical immunology – 3024. First evidence for epigenetic disruption in t-cells from children with food allergy. World Allergy Organ J. 2013 Apr 23;6(Suppl 1):P200. doi: 10.1186/1939-4551-6-S1-P200. PMCID: PMC3643706.
  20. Miller RL, Zhang H, Jezioro J, De Planell Saguer M, Lovinsky-Desir S, Liu X, Perzanowski M, Divjan A, Phipatanakul W, Matsui EC. Reduced mouse allergen is associated with epigenetic changes in regulatory genes, but not mouse sensitization, in asthmatic children. Environ Res. 2017 Jul;156:619-624. doi: 10.1016/j.envres.2017.04.025. Epub 2017 Apr 26. PMID: 28454014; PMCID: PMC5503684.
  21. Morin A, McKennan CG, Pedersen CT, Stokholm J, Chawes BL, Malby Schoos AM, Naughton KA, Thorsen J, Mortensen MS, Vercelli D, Trivedi U, Sørensen SJ, Bisgaard H, Nicolae DL, Bønnelykke K, Ober C. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J Allergy Clin Immunol. 2020 Dec;146(6):1358-1366. doi: 10.1016/j.jaci.2020.07.005. Epub 2020 Jul 18. PMID: 32693091; PMCID: PMC7821422.
  22. Paparo L, Nocerino R, Cosenza L, Aitoro R, D'Argenio V, Del Monaco V, Di Scala C, Amoroso A, Di Costanzo M, Salvatore F, Berni Canani R. Epigenetic features of FoxP3 in children with cow's milk allergy. Clin Epigenetics. 2016 Aug 12;8:86. doi: 10.1186/s13148-016-0252-z. PMID: 27525046; PMCID: PMC4981981.
  23. Rabinovitch N, Jones MJ, Gladish N, Faino AV, Strand M, Morin AM, MacIsaac J, Lin DTS, Reynolds PR, Singh A, Gelfand EW, Kobor MS, Carlsten C. Methylation of cysteinyl leukotriene receptor 1 genes associates with lung function in asthmatics exposed to traffic-related air pollution. Epigenetics. 2021 Jan-Feb;16(2):177-185. doi: 10.1080/15592294.2020.1790802. Epub 2020 Jul 12. PMID: 32657253; PMCID: PMC7889228.
  24. Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, Ha B, Altay G, Greenbaum JA, McVicker G, Seumois G, Rao A, Kronenberg M, Peters B, Vijayanand P. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018 Nov 29;175(6):1701-1715.e16. doi: 10.1016/j.cell.2018.10.022. Epub 2018 Nov 15. PMID: 30449622; PMCID: PMC6289654.
  25. Swamy RS, Reshamwala N, Hunter T, Vissamsetti S, Santos CB, Baroody FM, Hwang PH, Hoyte EG, Garcia MA, Nadeau KC. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol. 2012 Jul;130(1):215-24.e7. doi: 10.1016/j.jaci.2012.04.021. Epub 2012 Jun 5. Erratum in: J Allergy Clin Immunol. 2012 Nov;130(5):1224. PMID: 22677046; PMCID: PMC4161455.
  26. Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, Berglund JP, Tsai M, Maecker H, O'Riordan G, Galli SJ, Nadeau KC. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014 Feb;133(2):500-10. doi: 10.1016/j.jaci.2013.12.1037. PMID: 24636474; PMCID: PMC4121175.
  27. Tan, Lynette Liling*; Goh, Si Hui; Lee, May Ping; Loh, Wenyin; Goh, Anne; Chong, Kok Wee. IgE-mediated coconut allergy in tropical Singapore. Asia Pacific Allergy ():10.5415/apallergy.0000000000000175, January 13, 2025. | doi: 10.5415/apallergy.0000000000000175
  28. Zhao Y, Zhang J, Yang B, Li J, Ding Y, Wu L, Zhang L, Wang J, Zhu X, Zhang F, Tao X, Li Y, Zhang C, Li L, Lu J, Diao Q, Lu Q, Man X, Li F, Xia X, Cheng H, Jia Y, Zhao G, Yan J, Chen B. Efficacy and safety of CM310 in moderate-to-severe atopic dermatitis: A multicenter, randomized, double-blind, placebo-controlled phase 2b trial. Chin Med J (Engl). 2024 Jan 20;137(2):200-208. doi: 10.1097/CM9.0000000000002747. Epub 2023 Jul 21. PMID: 37482623; PMCID: PMC10798785.
  29. Yang, I.V.; Pedersen, B.S.; Liu, A.H.; O’Connor, G.T.; Pillai, D.; Kattan, M.; Misiak, R.T.; Gruchalla, R.; Szefler, S.J.; Hershey, G.K.K.; et al. The nasal methylome and childhood atopic asthma. J. Allergy Clin. Immunol. 2016, 139, 1478–1488.
  30. Nicodemus-Johnson, J.; Myers, R.A.; Sakabe, N.J.; Sobreira, D.R.; Hogarth, D.K.; Naureckas, E.T.; Sperling, A.I.; Solway, J.; White, S.R.; Nobrega, M.A.; et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 2016, 1, e90151.
  31. Tost, J. A translational perspective on epigenetics in allergic diseases. J. Allergy Clin. Immunol. 2018, 142, 715–726.
  32. Lovinsky-Desir, S.; Miller, R.L. Epigenetics, Asthma, and Allergic Diseases: A Review of the Latest Advancements. Curr. Allergy Asthma Rep. 2012, 12, 211–220.
  33. Li, J.; Panganiban, R.; Kho, A.T.; McGeachie, M.J.; Farnam, L.; Chase, R.P.; Weiss, S.T.; Lu, Q.; Tantisira, K.G. Circulating MicroRNAs and Treatment Response in Childhood Asthma. Am. J. Respir. Crit. Care Med. 2020, 202, 65–72.
  34. Ito, K.; Lim, S.; Caramori, G.; Cosio, B.G.; Chung, K.F.; Adcock, I.M.; Barnes, P.J. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc. Natl. Acad. Sci. USA 2002, 99, 8921–8926.
  35. Rebane, A.; Akdis, C.A. MicroRNAs: Essential players in the regulation of inflammation. J. Allergy Clin. Immunol. 2013, 132, 15–26
  36. Barni S, Liccioli G, Sarti L, Giovannini M, Novembre E, Mori F. Immunoglobulin E (IgE)-Mediated Food Allergy in Children: Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. Medicina (Kaunas). 2020 Mar 4;56(3):111. doi: 10.3390/medicina56030111. PMID: 32143431; PMCID: PMC7142605.
  37. Fiuza BSD, Fonseca HF, Meirelles PM, Marques CR, da Silva TM and Figueiredo CA (2021) Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes. Front. Immunol. 12:623737. doi: 10.3389/fimmu.2021.623737
  38. Mijač, S.; Banić, I.; Genc, A.-M.; Lipej, M.; Turkalj, M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. Medicina 2024, 60, 110. https://doi.org/10.3390/medicina60010110
  39. Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol. 2023 Sep;152(3):582-590. doi: 10.1016/j.jaci.2023.05.020. Epub 2023 Jun 7. PMID: 37295475; PMCID: PMC10564109.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © ABV-press,



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies