Elimination of participants in the allergy mechanism: elimination of homeostasis mechanisms? New approaches to the treatment of allergies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The participation of an allergic reaction and its main constituent elements (IgE, mast cells/basophils, and eosinophils) in maintaining various types of homeostatic function is becoming increasingly obvious. This is illustrated by the example of such evolutionary acquisitions as antiparasitic and antitumor types of resistance of the organism of highly organized animal species. All three participants in the allergic reaction are involved in the preservation of the mechanisms of these forms of homeostasis, from which follows the frequently expressed fear that prolonged maintenance of the blockade of the activity of these participants. Even more so, their elimination may be accompanied by undesirable consequences in the form of suppression of specific homeostasis mechanisms, which should be taken into account when introducing into clinical practice of new groups of antiallergic drugs focused on long-term and even lifelong use.

The appeal to the development and use of antiallergic agents that eliminate the participants in the allergic response, acquired in the course of evolution and performing homeostatic functions, rather stems from the hopelessness of the situation in the treatment of patients with a severe course of the disease who are resistant to other methods of antiallergic therapy. Understanding and acceptance of such a concept in the scientific community can serve as an impetus for the improvement of existing and the creation of fundamentally new and strategically justified methods of preventing not the very possibility but the need for the development of an allergic response. Today, such methods are the restoration of the usefulness of barrier systems, allergen-specific immunotherapy, and use of natural methods to limit, stop, and reverse development (resolution) of an allergic reaction.

Full Text

Restricted Access

About the authors

IIgor S. Gushchin

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Author for correspondence.
Email: igushchin@yandex.ru
ORCID iD: 0000-0002-4465-6509
SPIN-code: 1905-4758

MD, Dr. Sci. (Med.), Professor, Corresponding member of Russian Academy of Sciences

Russian Federation, Moscow

Rakhim M. Khaitov

National Research Center ― Institute of Immunology Federal Medical-Biological Agency of Russia

Email: rkhaitov@mail.ru
ORCID iD: 0000-0002-2397-5172
SPIN-code: 4004-6561

MD, Dr. Sci. (Med.), Professor, Academician of Russian Academy of Sciences

Russian Federation, Moscow


  1. Ado AD. General allergology (a guide for doctors). 2nd ed., revised and updated. Moscow: Medicine; 1978. 464 р. (In Russ).
  2. Khaitov RM. Immunology: textbook. 4th ed., revised and updated. Moscow: GEOTAR-Media; 2021. 520 р. (In Russ). doi: 10.33029/9704-6398-7-IMM-2021-1-520
  3. Gushchin IS. On the elements of biological expediency of allergic reactivity. Patholog Physiol Experiment Ther. 1979;(4):3–11. (In Russ).
  4. Gushchin IS. Evolutionary warning: allergy. Patholog Physiol Experiment Ther. 2014;58(1):57–67. (In Russ).
  5. Gushchin IS. Allergy ― late product of the immune system evolution. Immunology. 2019;40(2):43–57. (In Russ). doi: 10.24411/0206-4952-2019-12007
  6. Gushchin IS, Kurbacheva OM. Allergy and allergen-specific immunotherapy. Moscow: Pharmarus Print Media; 2010. 228 р. (In Russ).
  7. Gushchin IS. Tissue barrier permeability to allergtn ― strtategic problem of allergology. Pulmonology. 2006;(3):5–13. (In Russ).
  8. Gushchin IS. Receptors of specialized pro-resolving mediators ― a probable target of pharmacological restoration of homeostasis in allergic inflammation. Immunology. 2021;42(3):277–292. (In Russ). doi: 10.33029/0206-4952-2021-42-3-277-292
  9. Tan HT, Sugita K, Akdis CA. Novel biologicals for the treatment of allergic diseases and asthma. Curr Allergy Asthma Rep. 2016;16(10):70. doi: 10.1007/s11882-016-0650-5
  10. Karra L, Berent-Maoz B, Ben-Zimra M, Levi-Schaffer F. Are we ready to downregulate mast cells? Curr Opin Immunol. 2009;21(6):708–714. doi: 10.1016/j.coi.2009.09.010
  11. Siebenhaar F, Redegeld FA, Bischoff SC, et al. Mast cells as drivers of disease and therapeutic targets. Trends Immunol. 2018;39(2):151–162. doi: 10.1016/j.it.2017.10.005
  12. Schanin J, Gebremeskel S, Korver W, et al. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 2021;14(2):366–376. doi: 10.1038/s41385-020-00336-9
  13. Kay AB, Bousquet J, Holt PG, Kaplan AP, ed. Allergy and Allergic Diseases, 2 Volume Set. 2nd ed. New York: Wiley-Blackwell; 2008. 2184 р.
  14. Akdis CA, Agache I. EAACI Global Atlas of Allergy. Zurich: European Academy of Allergy and Clinical Immunology; 2014.
  15. Galli SJ. The mast Cell-IgE paradox: from homeostasis to anaphylaxis. Am J Pathol. 2016;186(2):212–224. doi: 10.1016/j.ajpath.2015.07.025
  16. Burton OT, Oettgen HC. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev. 2011;242(1):128–143. doi: 10.1111/j.1600-065X.2011.01024.x
  17. Dudeck A, Köberle M, Goldmann O, et al. Mast cells as protectors of health. J Allergy Clin Immunol. 2019;144(4S):S4–S18. doi: 10.1016/j.jaci.2018.10.054
  18. Mukai K, Tsai M, Starkl P, et al. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol. 2016;38(5):581–603. doi: 10.1007/s00281-016-0565-1
  19. Yoshikawa S, Miyake K, Kamiya A, Karasuyama H. The role of basophils in acquired protective immunity to tick infestation. Parasite Immunol. 2021;43(5):e12804. doi: 10.1111/pim.12804
  20. Marshall JS, Portales-Cervantes L, Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci. 2019;20(17):4241. doi: 10.3390/ijms20174241
  21. Lu F, Huang S. The roles of mast cells in parasitic protozoan infections. Front Immunol. 2017;8:363. doi: 10.3389/fimmu.2017.00363
  22. Conti P, Caraffa A, Ronconi G, et al. Recent progress on pathophysiology, inflammation and defense mechanism of mast cells against invading microbes: inhibitory effect of IL-37. Cent Eur J Immunol. 2019;44(4):447–454. doi: 10.5114/ceji.2019.92807
  23. Simon HU, Yousefi S, Germic N, et al. The cellular functions of eosinophils: collegium internationale allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 2020;181(1):11–23. doi: 10.1159/000504847
  24. Klion AD, Ackerman SJ, Bochner BS. Contributions of eosinophils to human health and disease. Annu Rev Pathol. 2020;15:179–209. doi: 10.1146/annurev-pathmechdis-012419-032756
  25. Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. 2012;484(7395):465–472. doi: 10.1038/nature11047
  26. Varricchi G, Rossi FW, Galdiero MR, et al. Physiological roles of mast cells: collegium internationale allergologicum update 2019. Int Arch Allergy Immunol. 2019;179(4):247–261. doi: 10.1159/000500088
  27. Chauhan J, McCraw AJ, Nakamura M, et al. IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel). 2020;9(4):55. doi: 10.3390/antib9040055
  28. Pritchard DI, Falcone FH, Mitchell PD. The evolution of IgE-mediated type I hypersensitivity and its immunological value. Allergy. 2021;76(4):1024–1040. doi: 10.1111/all.14570
  29. Duarte J, Deshpande P, Guiyedi V, et al. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status. Malar J. 2007;6:1. doi: 10.1186/1475-2875-6-1
  30. Mossalayi MD, Arock M, Mazier D, et al. The human immune response during cutaneous leishmaniasis: NO problem. Parasitol Today. 1999;15(8):342–345. doi: 10.1016/s0169-4758(99)01477-5
  31. Wright JE, Werkman M, Dunn JC, Anderson RM. Current epidemiological evidence for predisposition to high or low intensity human helminth infection: a systematic review. Parasit Vectors. 2018;11(1):65. doi: 10.1186/s13071-018-2656-4
  32. Al Amin AS, Wadhwa R. Helminthiasis. 2021 Jul 21. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
  33. Capron A, Dessaint JP, Haque A, Capron M. Antibody-dependent cell-mediated cytotoxicity against parasites. Prog Allergy. 1982;31:234–267.
  34. Finkelman FD, Shea-Donohue T, Morris SC, et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev. 2004;201:139–155. doi: 10.1111/j.0105-2896.2004.00192.x
  35. Capron A, Dessaint JP. Effector and regulatory mechanisms in immunity to schistosomes: a heuristic view. Annu Rev Immunol. 1985;3:455–476. doi: 10.1146/annurev.iy.03.040185.002323
  36. Vignali DA, Bickle QD, Taylor MG. Immunity to Schistosoma mansoni in vivo: contradiction or clarification? Immunol Today. 1989;10(12):410–416. doi: 10.1016/0167-5699(89)90038-8
  37. Capron M, Spiegelberg HL, Prin L, et al. Role of IgE receptors in effector function of human eosinophils. J Immunol. 1984; 132(1):462–468.
  38. Auriault C, Damonneville M, Verwaerde C, et al. Rat IgE directed against schistosomula-released products is cytotoxic for Schistosoma mansoni schistosomula in vitro. Eur J Immunol. 1984; 14(2):132–138. doi: 10.1002/eji.1830140206
  39. Hagan P, Blumenthal UJ, Dunn D, et al. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature. 1991;349(6306):243–245. doi: 10.1038/349243a0
  40. Rihet P, Demeure CE, Bourgois A, et al. Evidence for an association between human resistance to Schistosoma mansoni and high anti-larval IgE levels. Eur J Immunol. 1991;21(11):2679–2686. doi: 10.1002/eji.1830211106
  41. Dunne DW, Butterworth AE, Fulford AJ, et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur J Immunol. 1992;22(6):1483–1494. doi: 10.1002/eji.1830220622
  42. Spencer LA, Porte P, Zetoff C, Rajan TV. Mice genetically deficient in immunoglobulin E are more permissive hosts than wild-type mice to a primary, but not secondary, infection with the filarial nematode Brugia malayi. Infect Immun. 2003;71(5):2462–2467. doi: 10.1128/IAI.71.5.2462-2467.2003
  43. Gurish MF, Bryce PJ, Tao H, et al. IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J Immunol. 2004;172(2):1139–1145. doi: 10.4049/jimmunol.172.2.1139
  44. Schwartz C, Turqueti-Neves A, Hartmann S, et al. Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proc Natl Acad Sci USA. 2014; 111(48):E5169–5177. doi: 10.1073/pnas.1412663111
  45. Cruz AA, Lima F, Sarinho E, et al. Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection. Clin Exp Allergy. 2007;37(2):197–207. doi: 10.1111/j.1365-2222.2007.02650.x
  46. Pelaia C, Calabrese C, Terracciano R, et al. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther Adv Respir Dis. 2018;12:1753466618810192. doi: 10.1177/1753466618810192
  47. Matsumoto M, Sasaki Y, Yasuda K, et al. IgG and IgE collaboratively accelerate expulsion of Strongyloides venezuelensis in a primary infection. Infect Immun. 2013;81(7):2518–2527. doi: 10.1128/IAI.00285-13
  48. Watanabe N, Katakura K, Kobayashi A, et al. Protective immunity and eosinophilia in IgE-deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trichinella spiralis // Proc Natl Acad Sci USA. 1988;85(12):4460–4462. doi: 10.1073/pnas.85.12.4460
  49. Watanabe N. Impaired protection against Trichinella spiralis in mice with high levels of IgE. Parasitol Int. 2014;63(2):332–336. doi: 10.1016/j.parint.2013.12.004
  50. Pritchard DI. Immunity to helminths: is too much IgE parasite--rather than host-protective? Parasite Immunol. 1993;15(1):5–9. doi: 10.1111/j.1365-3024.1993.tb00566.x
  51. Pritchard DI, Hewitt C, Moqbel R. The relationship between immunological responsiveness controlled by T-helper 2 lymphocytes and infections with parasitic helminths. Parasitology. 1997;115(Suppl):S33–44. doi: 10.1017/s0031182097001996
  52. Amiri P, Haak-Frendscho M, Robbins K, et al. Anti-immunoglobulin E treatment decreases worm burden and egg production in Schistosoma mansoni-infected normal and interferon gamma knockout mice. J Exp Med. 1994;180(1):43–51. doi: 10.1084/jem.180.1.43
  53. King CL, Xianli J, Malhotra I, et al. Mice with a targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni. J Immunol. 1997;158(1):294–300.
  54. Jankovic D, Kullberg MC, Dombrowicz D, et al. Fc epsilonRI-deficient mice infected with Schistosoma mansoni mount normal Th2-type responses while displaying enhanced liver pathology. J Immunol. 1997;159(4):1868–1875.
  55. Martin RK, Damle SR, Valentine YA, et al. B1 Cell IgE impedes mast cell-mediated enhancement of parasite expulsion through B2 IgE blockade. Cell Rep. 2018;22(7):1824–1834. doi: 10.1016/j.celrep.2018.01.048
  56. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70-. J Exp Med. 2011;208(1):67–80. doi: 10.1084/jem.20101499
  57. Pennock JL, Grencis RK. The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy. 2006;90:128–140. doi: 10.1159/000088885
  58. Abe T, Sugaya H, Ishida K, et al. Intestinal protection against Strongyloides ratti and mastocytosis induced by administration of interleukin-3 in mice. Immunology. 1993;80(1):116–21.
  59. Sasaki Y, Yoshimoto T, Maruyama H, et al. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J Exp Med. 2005;202(5):607–616. doi: 10.1084/jem.20042202
  60. Grencis RK, Else KJ, Huntley JF, Nishikawa SI. The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite Immunol. 1993;15(1):55–59. doi: 10.1111/j.1365-3024.1993.tb00572.x
  61. Donaldson LE, Schmitt E, Huntley JF, et al. A critical role for stem cell factor and c-kit in host protective immunity to an intestinal helminth. Int Immunol. 1996;8(4):559–567. doi: 10.1093/intimm/8.4.559
  62. Lantz CS, Boesiger J, Song CH, et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature. 1998;392(6671):90–93. doi: 10.1038/32190
  63. Koyama K, Ito Y. Mucosal mast cell responses are not required for protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol. 2000;22(1):13–20. doi: 10.1046/j.1365-3024.2000.00270.x
  64. Knight PA, Wright SH, Lawrence CE, et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med. 2000;192(12):1849–1856. doi: 10.1084/jem.192.12.1849
  65. McKean PG, Pritchard DI. The action of a mast cell protease on the cuticular collagens of Necator americanus. Parasite Immunol. 1989;11(3):293–297. doi: 10.1111/j.1365-3024.1989.tb00667.x
  66. Marzio L, Blennerhassett P, Vermillion D, et al. Distribution of mast cells in intestinal muscle of nematode-sensitized rats. Am J Physiol. 1992;262(3 Pt 1):G477–482. doi: 10.1152/ajpgi.1992.262.3.G477
  67. Madden KB, Whitman L, Sullivan C, et al. Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. J Immunol. 2002;169(8):4417–4422. doi: 10.4049/jimmunol.169.8.4417
  68. McDermott JR, Bartram RE, Knight PA, et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA. 2003;100(13):7761–7766. doi: 10.1073/pnas.1231488100
  69. Maruyama H, Yabu Y, Yoshida A, et al. A role of mast cell glycosaminoglycans for the immunological expulsion of intestinal nematode, Strongyloides venezuelensis. J Immunol. 2000;164(7): 3749–3754. doi: 10.4049/jimmunol.164.7.3749
  70. Ohnmacht C, Voehringer D. Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. J Immunol. 2010;184(1):344–350. doi: 10.4049/jimmunol.0901841
  71. Ohnmacht C, Schwartz C, Panzer M, et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010;33(3):364–374. doi: 10.1016/j.immuni.2010.08.011
  72. Sullivan BM, Liang HE, Bando JK, et al. Genetic analysis of basophil function in vivo. Nat Immunol. 2011;12(6):527–535. doi: 10.1038/ni.2036
  73. Linnemann LC, Reitz M, Feyerabend TB, et al. Limited role of mast cells during infection with the parasitic nematode Litomosoides sigmodontis. PLoS Negl Trop Dis. 2020;14(7):e0008534. doi: 10.1371/journal.pntd.0008534
  74. Gushchin IS. Interactions of mast cells and eosinophils in allergic response. Russ J Allergy. 2020;17(2):5–17. (In Russ). doi: 10.36691/RJA1363
  75. Behm CA, Ovington KS. The role of eosinophils in parasitic helminth infections: insights from genetically modified mice. Parasitol Today. 2000;16(5):202–209. doi: 10.1016/s0169-4758(99)01620-8
  76. Butterworth AE. Cell-mediated damage to helminths. Adv Parasitol. 1984;23:143–235. doi: 10.1016/s0065-308x(08)60287-0
  77. Hagan P, Wilkins HA, Blumenthal UJ, et al. Eosinophilia and resistance to Schistosoma haematobium in man. Parasite Immunol. 1985;7(6):625–632. doi: 10.1111/j.1365-3024.1985.tb00106.x
  78. Sturrock RF, Kimani R, Cottrell BJ, et al. Observations on possible immunity to reinfection among Kenyan schoolchildren after treatment for Schistosoma mansoni. Trans R Soc Trop Med Hyg. 1983;77(3):363–371. doi: 10.1016/0035-9203(83)90166-9
  79. Butterworth AE. The eosinophil and its role in immunity to helminth infection. Curr Top Microbiol Immunol. 1977;77:127–168. doi: 10.1007/978-3-642-66740-4_5
  80. Motran CC, Silvane L, Chiapello LS, et al. Helminth infections: recognition and modulation of the immune response by innate immune cells. Front Immunol. 2018;9:664. doi: 10.3389/fimmu.2018.00664
  81. Sasaki O, Sugaya H, Ishida K, Yoshimura K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol. 1993;15(6):349–354. doi: 10.1111/j.1365-3024.1993.tb00619.x
  82. Ehrens A, Rüdiger N, Heepmann L, et al. Eosinophils and neutrophils eliminate migrating strongyloides ratti larvae at the site of infection in the context of extracellular DNA trap formation. Front Immunol. 2021;12:715766. doi: 10.3389/fimmu.2021.715766
  83. Turner JD, Pionnier N, Furlong-Silva J, et al. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia // PLoS Pathog. 2018;14(3):e1006949. doi: 10.1371/journal.ppat.1006949
  84. Frohberger SJ, Ajendra J, Surendar J, et al. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors. 2019;12(1):248. doi: 10.1186/s13071-019-3502-z
  85. Eriksson J, Reimert CM, Kabatereine NB, et al. The 434(G>C) polymorphism within the coding sequence of Eosinophil Cationic Protein (ECP) correlates with the natural course of Schistosoma mansoni infection. Int J Parasitol. 2007;37(12):1359–1366. doi: 10.1016/j.ijpara.2007.04.001
  86. Swartz JM, Dyer KD, Cheever AW, et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood. 2006;108(7): 2420–2427. doi: 10.1182/blood-2006-04-015933
  87. Sher A, Coffman RL, Hieny S, Cheever AW. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J Immunol. 1990;145(11):3911–3916.
  88. Fabre V, Beiting DP, Bliss SK, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182(3):1577–1583. doi: 10.4049/jimmunol.182.3.1577
  89. Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113(1): 30–37. doi: 10.1016/j.jaci.2003.10.050
  90. Kanda A, Yasutaka Y, Van Bui D, et al. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: is their role beneficial, detrimental, regulator, or bystander? Biol Pharm Bull. 2020;43(1): 20–30. doi: 10.1248/bpb.b19-00892
  91. Mpairwe H, Amoah AS. Parasites and allergy: Observations from Africa. Parasite Immunol. 2019;41(6):e12589. doi: 10.1111/pim.12589
  92. Fitzsimmons CM, Falcone FH, Dunne DW. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front Immunol. 2014;5:61. doi: 10.3389/fimmu.2014.00061
  93. Grencis RK, Humphreys NE, Bancroft AJ. Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev. 2014;260(1):183–205. doi: 10.1111/imr.12188
  94. Anthony RM, Rutitzky LI, Urban JF et al. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7(12): 975–979. doi: 10.1038/nri2199
  95. Zelya OP, Kukina IV. Human babesiosis. Med News North Caucasus. 2020;15(3):449–455. (In Russ). doi: 10.14300/mnnc.2020.15107
  96. Sizikova TE, Lebedev VN, Pantukhov VB, Borisevich SV. Severe fever with thrombocytopenia syndrome: the disease, caused by the novel phlebovirus. Problems Virol. 2017;62(2):60–65. (In Russ). doi: 10.18821/0507-4088-2017-62-2-60-65
  97. Yankovskaya YD, Chernobrovkinya TY, Onuhova MP, et al. Some epidemiological aspects associated with infections transmitted by ixodid ticks in metropolitan city. Archive Int Med. 2017;7(6):423–432. (In Russ). doi: 10.20514/2226-6704-2017-7-6-423-432
  98. Keshavarz B, Erickson LD, Platts-Mills TA, Wilson JM. Lessons in innate and allergic immunity from dust mite feces and tick bites front. Allergy. 2021;2:692643. doi: 10.3389/falgy.2021
  99. Commins SP. Diagnosis & management of alpha-gal syndrome: lessons from 2,500 patients. Expert Rev Clin Immunol. 2020; 16(7):667–677. doi: 10.1080/1744666X.2020.1782745
  100. Trager W. Acquired immunity to ticks. J Parasitol. 1939; 25(1):57–81.
  101. Wikel SK. Host immunity to ticks. Annu Rev Entomol. 1996; 41:1–22. doi: 10.1146/annurev.en.41.010196.000245
  102. Allen JR. Immunology of interactions between ticks and laboratory animals. Exp Appl Acarol. 1989;7(1):5–13. doi: 10.1007/BF01200448
  103. Wikel SK. Tick modulation of host immunity: an important factor in pathogen transmission. Int J Parasitol. 1999;29(6):851–859. doi: 10.1016/s0020-7519(99)00042-9
  104. Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3:43. doi: 10.3389/fcimb.2013.00043
  105. Burke G, Wikel SK, Spielman A, et al.; Tick-borne Infection Study Group. Hypersensitivity to ticks and Lyme disease risk. Emerg Infect Dis. 2005;11(1):36–41. doi: 10.3201/eid1101.040303
  106. Wikel SK, Allen JR. Acquired resistance to ticks. I. Passive transfer of resistance. Immunology. 1976;30(3):311–316.
  107. Brown SJ, Askenase PW. Amblyomma americanum: requirement for host Fc receptors in antibody-mediated acquired immune resistance to ticks. Exp Parasitol. 1985;59(2):248–256. doi: 10.1016/0014-4894(85)90079-7
  108. Askenase PW, Bagnall BG, Worms MJ. Cutaneous basophil-associated resistance to ectoparasites (ticks). I. Transfer with immune serum or immune cells. Immunology. 1982;45(3):501–511.
  109. Matsuda H, Watanabe N, Kiso Y, et al. Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. J Immunol. 1990; 144(1):259–262.
  110. Wada T, Ishiwata K, Koseki H, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest. 2010;120(8):2867–2875. doi: 10.1172/JCI42680
  111. Allen JR. Tick resistance: basophils in skin reactions of resistant guinea pigs. Int J Parasitol. 1973;3(2):195–200. doi: 10.1016/0020-7519(73)90024-6
  112. Brown SJ, Askenase PW. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: passive transfer with peritoneal exudate cells or serum. J Immunol. 1981;127(5):2163–2167.
  113. Kimura R, Sugita K, Ito A, et al. Basophils are recruited and localized at the site of tick bites in humans. J Cutan Pathol. 2017;44(12):1091–1093. doi: 10.1111/cup.13045
  114. Brown SJ, Galli SJ, Gleich GJ, Askenase PW. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. J Immunol. 1982; 129(2):790–796.
  115. Matsuda H, Fukui K, Kiso Y, Kitamura Y. Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks. J Parasitol. 1985;71(4):443–448.
  116. Matsuda H, Nakano T, Kiso Y, Kitamura Y. Normalization of anti-tick response of mast cell-deficient W/Wv mice by intracutaneous injection of cultured mast cells. J Parasitol. 1987;73(1):155–160.
  117. Den Hollander N, Allen JR. Dermacentor variabilis: resistance to ticks acquired by mast cell-deficient and other strains of mice. Exp Parasitol. 1985;59(2):169–179. doi: 10.1016/0014-4894(85)90069-4
  118. Steeves EB, Allen JR. Tick resistance in mast cell-deficient mice: histological studies. Int J Parasitol. 1991;21(2):265–268. doi: 10.1016/0020-7519(91)90020-8
  119. Karasuyama H, Miyake K, Yoshikawa S, et al. How do basophils contribute to Th2 cell differentiation and allergic responses? Int Immunol. 2018;30(9):391–396. doi: 10.1093/intimm/dxy026
  120. Kojima T, Obata K, Mukai K, et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol. 2007;179(10):7093–7100. doi: 10.4049/jimmunol.179.10.7093
  121. Wikel SK. Histamine content of tick attachment sites and the effects of H1 and H2 histamine antagonists on the expression of resistance. Ann Trop Med Parasitol. 1982;76(2):179–85. doi: 10.1080/00034983.1982.11687525
  122. Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae--studies in vivo and in vitro. Parasitology. 1980;80(3):487–496. doi: 10.1017/s0031182000000950
  123. Brossard M. Rabbits infested with adult Ixodes ricinus L.: effects of mepyramine on acquired resistance. Experientia. 1982; 38(6):702–704. doi: 10.1007/BF01964106
  124. Tabakawa Y, Ohta T, Yoshikawa S, et al. Histamine released from skin-infiltrating basophils but not mast cells is crucial for acquired tick resistance in mice. Front Immunol. 2018;9:1540. doi: 10.3389/fimmu.2018.01540
  125. McCraw AJ, Chauhan J, Bax HJ, et al. Insights from IgE immune surveillance in allergy and cancer for anti-tumour ige treatments. Cancers (Basel). 2021;13(17):4460. doi: 10.3390/cancers13174460
  126. Ure DM. Negative assoication between allergy and cancer. Scott Med J. 1969;14(2):51–54. doi: 10.1177/003693306901400203
  127. Allegra J, Lipton A, Harvey H, et al. Decreased prevalence of immediate hypersensitivity (atopy) in a cancer population. Cancer Res. 1976;36(9 pt.1):3225–3226.
  128. Augustin R, Chandradasa KD. IgE levels and allergic skin reactions in cancer and non-cancer patients. Int Arch Allergy Appl Immunol. 1971;41(1):141–143. doi: 10.1159/000230505
  129. McCormick DP, Ammann AJ, Ishizaka K, et al. A study of allergy in patients with malignant lymphoma and chronic lymphocytic leukemia. Cancer. 1971;27(1):93–99. doi: 10.1002/1097-0142(197101)27:1<93::aid-cncr2820270114>3.0.co;2-0
  130. Wang H, Diepgen TL. Is atopy a protective or a risk factor for cancer? A review of epidemiological studies. Allergy. 2005;60(9):1098–1111. doi: 10.1111/j.1398-9995.2005.00813.x
  131. Turner MC. Epidemiology: allergy history, IgE, and cancer. Cancer Immunol Immunother. 2012;61(9):1493–1510. doi: 10.1007/s00262-011-1180-6
  132. Josephs DH, Spicer JF, Corrigan CJ, et al. Epidemiological associations of allergy, IgE and cancer. Clin Exp Allergy. 2013; 43(10):1110–1123. doi: 10.1111/cea.12178
  133. Hayes MD, Ward S, Crawford G, et al. Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth. Elife. 2020;9:e51862. doi: 10.7554/eLife.51862
  134. Karim AF, Westenberg LE, Eurelings LE, et al. The association between allergic diseases and cancer: a systematic review of the literature. Neth J Med. 2019;77(2):42–66.
  135. Wang L, Bierbrier R, Drucker AM, Chan AW. Noncutaneous and cutaneous cancer risk in patients with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 2020;156(2):158–171. doi: 10.1001/jamadermatol.2019.3786
  136. Hemminki K, Försti A, Fallah M, et al. Risk of cancer in patients with medically diagnosed hay fever or allergic rhinitis. Int J Cancer. 2014;135(10):2397–2403. doi: 10.1002/ijc.28873
  137. Kozłowska R, Bożek A, Jarząb J. Association between cancer and allergies. Allergy Asthma Clin Immunol. 2016;12:39. doi: 10.1186/s13223-016-0147-8
  138. Rosenberger A, Bickeböller H, McCormack V, et al. Asthma and lung cancer risk: a systematic investigation by the International Lung Cancer Consortium. Carcinogenesis. 2012;33(3):587–597. doi: 10.1093/carcin/bgr307
  139. Rittmeyer D, Lorentz A. Relationship between allergy and cancer: an overview. Int Arch Allergy Immunol. 2012;159(3):216–225. doi: 10.1159/000338994
  140. Ji J, Shu X, Li X, et al. Cancer risk in hospitalised asthma patients. Br J Cancer. 2009;100(5):829–833. doi: 10.1038/sj.bjc.6604890
  141. Arana A, Wentworth CE, Fernández-Vidaurre C, et al. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the U.K. Br J Dermatol. 2010;163(5):1036–1043. doi: 10.1111/j.1365-2133.2010.09887.x
  142. Talbot-Smith A, Fritschi L, Divitini ML, et al. Allergy, atopy, and cancer: a prospective study of the 1981 Busselton cohort. Am J Epidemiol. 2003;157(7):606–612. doi: 10.1093/aje/kwg020
  143. Gandini S, Stanganelli I, Palli D, et al. Atopic dermatitis, naevi count and skin cancer risk: A meta-analysis. J Dermatol Sci. 2016;84(2):137–143. doi: 10.1016/j.jdermsci.2016.07.009
  144. Jensen AO, Svaerke C, Körmendiné Farkas D, et al. Atopic dermatitis and risk of skin cancer: a Danish nationwide cohort study (1977–2006). Am J Clin Dermatol. 2012;13(1):29–36. doi: 10.2165/11593280-000000000-00000
  145. Hwang CY, Chen YJ, Lin MW, et al. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: a nationwide cohort study in Taiwan. Int J Cancer. 2012;130(5):1160–1167. doi: 10.1002/ijc.26105
  146. Wiemels JL, Wiencke JK, Li Z, et al. Risk of squamous cell carcinoma of the skin in relation to IgE: a nested case-control study. Cancer Epidemiol Biomarkers Prev. 2011;20(11):2377–2383. doi: 10.1158/1055-9965.EPI-11-0668
  147. Cheng J, Zens MS, Duell E, et al. History of allergy and atopic dermatitis in relation to squamous cell and Basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2015;24(4):749–754. doi: 10.1158/1055-9965.EPI-14-1243
  148. Wulaningsih W, Holmberg L, Garmo H, et al. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology. 2016;5(6):e1154250. doi: 10.1080/2162402X.2016.1154250
  149. Halling-Overgaard AS, Ravnborg N, Silverberg JI, et al. Atopic dermatitis and cancer in solid organs: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2019;33(2):e81–e82. doi: 10.1111/jdv.15230
  150. Merrill RM, Isakson RT, Beck RE. The association between allergies and cancer: what is currently known? Ann Allergy Asthma Immunol. 2007;99(2):102–116; quiz 117-9, 150. doi: 10.1016/S1081-1206(10)60632-1
  151. Bosetti C, Talamini R, Franceschi S, et al. Allergy and the risk of selected digestive and laryngeal neoplasms. Eur J Cancer Prev. 2004;13(3):173–176. doi: 10.1097/01.cej.0000130016.85687.cf
  152. Fereidouni M, Ferns GA, Bahrami A. Current status and perspectives regarding the association between allergic disorders and cancer. IUBMB Life. 2020;72(7):1322–1339. doi: 10.1002/iub.2285
  153. Vesterinen E, Pukkala E, Timonen T, Aromaa A. Cancer incidence among 78,000 asthmatic patients. Int J Epidemiol. 1993; 22(6):976–982. doi: 10.1093/ije/22.6.976
  154. Amirian ES, Marquez-Do D, Bondy ML, Scheurer ME. Antihistamine use and immunoglobulin E levels in glioma risk and prognosis. Cancer Epidemiol. 2013;37(6):908–912. doi: 10.1016/j.canep.2013.08.004
  155. McCarthy BJ, Rankin K, Il’yasova D, et al. Assessment of type of allergy and antihistamine use in the development of glioma. Cancer Epidemiol Biomarkers Prev. 2011;20(2):370–378. doi: 10.1158/1055-9965
  156. Linos E, Raine T, Alonso A, Michaud D. Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst. 2007;99(20):1544–1550. doi: 10.1093/jnci/djm170
  157. Fritz I, Wagner P, Olsson H. Improved survival in several cancers with use of H1-antihistamines desloratadine and loratadine. Transl Oncol. 2021;14(4):101029. doi: 10.1016/j.tranon.2021.101029
  158. Van Hemelrijck M, Garmo H, Binda E, et al. Immunoglobulin E and cancer: a meta-analysis and a large Swedish cohort study. Cancer Causes Control. 2010;21(10):1657–1667. doi: 10.1007/s10552-010-9594-6
  159. Calboli FC, Cox DG, Buring JE, et al. Prediagnostic plasma IgE levels and risk of adult glioma in four prospective cohort studies. J Natl Cancer Inst. 2011;103(21):1588–1595. doi: 10.1093/jnci/djr361
  160. Wiemels JL, Wiencke JK, Patoka J, et al. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. Cancer Res. 2004;64(22):8468–8473. doi: 10.1158/0008-5472
  161. Nieters A, Łuczyńska A, Becker S, et al. Prediagnostic immunoglobulin E levels and risk of chronic lymphocytic leukemia, other lymphomas and multiple myeloma-results of the European Prospective Investigation into Cancer and Nutrition. Carcinogenesis. 2014;35(12):2716–2722. doi: 10.1093/carcin/bgu188
  162. Ferastraoaru D, Bax HJ, Bergmann C, et al. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI). Clin Transl Allergy. 2020;10:32. doi: 10.1186/s13601-020-00335-w
  163. Jensen-Jarolim E, Achatz G, Turner MC, et al. AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy. 2008;63(10): 1255–1266. doi: 10.1111/j.1398-9995.2008.01768.x
  164. Singer J, Achatz-Straussberger G, Bentley-Lukschal A, et al. AllergoOncology: High innate IgE levels are decisive for the survival of cancer-bearing mice. World Allergy Organ J. 2019;12(7):100044. doi: 10.1016/j.waojou.2019.100044
  165. Fu SL, Pierre J, Smith-Norowitz TA, et al. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol. 2008;153(3):401–409. doi: 10.1111/j.1365-2249.2008.03726.x
  166. Daniels TR, Leuchter RK, Quintero R, et al. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol Immunother. 2012;61(7):991–1003. doi: 10.1007/s00262-011-1150-z
  167. Karagiannis P, Singer J, Hunt J, et al. Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother. 2009;58(6):915–930. doi: 10.1007/s00262-008-0607-1
  168. Spillner E, Plum M, Blank S, et al. Recombinant IgE antibody engineering to target EGFR. Cancer Immunol Immunother. 2012; 61(9):1565–1573. doi: 10.1007/s00262-012-1287-4
  169. Chauhan J, McCraw AJ, Nakamura M, et al. IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel). 2020; 9(4):55. doi: 10.3390/antib9040055
  170. Busse W, Buhl R, Fernandez Vidaurre C, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129(4):983–989.e6. doi: 10.1016/j.jaci.2012.01.033
  171. Long A, Rahmaoui A, Rothman KJ, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134(3):560–567.e4. doi: 10.1016/j.jaci.2014.02.007
  172. Johnston A, Smith C, Zheng C, et al. Influence of prolonged treatment with omalizumab on the development of solid epithelial cancer in patients with atopic asthma and chronic idiopathic urticaria: A systematic review and meta-analysis. Clin Exp Allergy. 2019;49(10):1291–1305. doi: 10.1111/cea.13457
  173. Mota D, Rama TA, Severo M, Moreira A. Potential cancer risk with omalizumab? A disproportionality analysis of the WHO’s VigiBase pharmacovigilance database. Allergy. 2021;76(10): 3209–3211. doi: 10.1111/all.15008
  174. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol. 2013;3:90. doi: 10.3389/fonc.2013.00090
  175. Lyons DO, Pullen NA. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States. Int J Mol Sci. 2020;21(4):1498. doi: 10.3390/ijms21041498
  176. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322. doi: 10.1016/j.ccr.2012.02.022
  177. Rajput AB, Turbin DA, Cheang MC, et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat. 2008;107(2):249–257. doi: 10.1007/s10549-007-9546-3
  178. Benyon RC, Bissonnette EY, Befus AD. Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies. J Immunol. 1991;147(7):2253–2258.
  179. Dimitriadou V, Koutsilieris M. Mast cell-tumor cell interactions: for or against tumour growth and metastasis? Anticancer Res. 1997;17(3A):1541–1549.
  180. Mehdawi L, Osman J, Topi G, Sjölander A. High tumor mast cell density is associated with longer survival of colon cancer patients. Acta Oncol. 2016;55(12):1434–1442. doi: 10.1080/0284186X.2016.1198493
  181. Johansson A, Rudolfsson S, Hammarsten P, et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol. 2010;177(2):1031–1041. doi: 10.2353/ajpath.2010.100070
  182. Siiskonen H, Poukka M, Bykachev A, et al. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res. 2015;25(6):479–485. doi: 10.1097/CMR.0000000000000192
  183. Pittoni P, Tripodo C, Piconese S, et al. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res. 2011;71(18):5987–5997. doi: 10.1158/0008-5472.CAN-11-1637
  184. Pittoni P, Colombo MP. The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res. 2012;72(4):831–835. doi: 10.1158/0008-5472.CAN-11-3110
  185. Carlini MJ, Dalurzo MC, Lastiri JM, et al. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol. 2010;41(5):697–705. doi: 10.1016/j.humpath.2009.04.029
  186. Grimbaldeston MA, Pearce AL, Robertson BO, et al. Association between melanoma and dermal mast cell prevalence in sun-unexposed skin. Br J Dermatol. 2004;150(5):895–903. doi: 10.1111/j.1365-2133.2004.05966.x
  187. Grujic M, Paivandy A, Gustafson AM, et al. The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget. 2017;8(15):25066–25079. doi: 10.18632/oncotarget.15339
  188. Caruso RA, Fedele F, Zuccalà V, et al. Mast cell and eosinophil interaction in gastric carcinomas: ultrastructural observations. Anticancer Res. 2007;27(1A):391–394.
  189. Da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738. doi: 10.1369/0022155414545334
  190. Dyduch G, Kaczmarczyk K, Okoń K. Mast cells and cancer: enemies or allies? Pol J Pathol. 2012;63(1):1–7.
  191. Poncin A, Onesti CE, Josse C, et al. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines. 2021;9(9):1087. doi: 10.3390/biomedicines9091087
  192. Mattei F, Andreone S, Marone G, et al. Eosinophils in the tumor microenvironment. Adv Exp Med Biol. 2020;1273:1–28. doi: 10.1007/978-3-030-49270-0_1
  193. Caruso RA, Branca G, Fedele F, et al. Eosinophil-Specific granules in tumor cell cytoplasm: unusual ultrastructural findings in a case of diffuse-type gastric carcinoma. Ultrastruct Pathol. 2015;39(4):226–230. doi: 10.3109/01913123.2014.991886
  194. Grisaru-Tal S, Itan M, Klion AD, Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer. 2020;20(10):594–607. doi: 10.1038/s41568-020-0283-9
  195. Kanda A, Yasutaka Y, Van Bui D, et al. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: is their role beneficial, detrimental, regulator, or bystander? Biol Pharm Bull. 2020; 43(1):20–30. doi: 10.1248/bpb.b19-00892
  196. Iwasaki K, Torisu M, Fujimura T. Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer. 1986;58(6):1321–1327. doi: 10.1002/1097-0142(19860915)58:6<1321::aid-cncr2820580623>3.0.co;2-o
  197. Jong EC, Klebanoff SJ. Eosinophil-mediated mammalian tumor cell cytotoxicity: role of the peroxidase system. J Immunol. 1980;124(4):1949–1953.
  198. Reichman H, Itan M, Rozenberg P, et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res. 2019;7(3):388–400. doi: 10.1158/2326-6066.CIR-18-0494
  199. Tanizaki J, Haratani K, Hayashi H, et al. Peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab. J Thorac Oncol. 2018; 13(1):97–105. doi: 10.1016/j.jtho.2017.10.030
  200. Dorta RG, Landman G, Kowalski LP, et al. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology. 2002;41(2):152–157. doi: 10.1046/j.1365-2559.2002.01437.x
  201. da Silva JM, Queiroz-Junior CM, Batista AC, et al. Eosinophil depletion protects mice from tongue squamous cell carcinoma induced by 4-nitroquinoline-1-oxide. Histol Histopathol. 2014;29(3):387–396. doi: 10.14670/HH-29.387
  202. Chouliaras K, Tokumaru Y, Asaoka M, et al. Prevalence and clinical relevance of tumor-associated tissue eosinophilia (TATE) in breast cancer. Surgery. 2021;169(5):1234–1239. doi: 10.1016/j.surg.2020.07.052
  203. Buder-Bakhaya K, Hassel JC. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment-a review from the melanoma perspective and beyond. Front Immunol. 2018;9:1474. doi: 10.3389/fimmu.2018.01474
  204. Gebhardt C, Sevko A, Jiang H, et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res. 2015; 21(24):5453–5459. doi: 10.1158/1078-0432.CCR-15-0676
  205. Martens A, Wistuba-Hamprecht K, Geukes Foppen M, et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res. 2016;22(12):2908–2918. doi: 10.1158/1078-0432.CCR-15-2412
  206. Weide B, Martens A, Hassel JC, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22(22):5487–5496. doi: 10.1158/1078-0432.CCR-16-0127
  207. Moreira A, Leisgang W, Schuler G, Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy. 2017;9(2):115–121. doi: 10.2217/imt-2016-0138
  208. Grisaru-Tal S, Dulberg S, Beck L, et al. Metastasis-Entrained eosinophils enhance lymphocyte-mediated antitumor immunity. Cancer Res. 2021;81(21):5555–5571. doi: 10.1158/0008-5472.CAN-21-0839
  209. Van Driel WJ, Hogendoorn PC, Jansen FW, et al. Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response. Hum Pathol. 1996;27(9):904–911. doi: 10.1016/s0046-8177(96)90216-6
  210. Xie F, Liu LB, Shang WQ, et al. The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Lett. 2015;364(2):106–117. doi: 10.1016/j.canlet.2015.04.029
  211. Tan LD, Schaeffer B, Alismail A. Parasitic (Helminthic) infection while on asthma biologic treatment: not everything is what it seems. J Asthma Allergy. 2019;12:415–420. doi: 10.2147/JAA.S223402
  212. Oda Y, Takahashi C, Harada S, et al. Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation. Sci Adv. 2021;7(47):eabj6895. doi: 10.1126/sciadv.abj6895

Supplementary files

There are no supplementary files to display.

Copyright © Pharmarus Print Media, 2022

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies