Современные аспекты изучения роли тропомиозина в развитии перекрестных аллергических реакций



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проблема изучения процесса формирования перекрестной реактивности к белкам при аллергических заболеваниях является весьма актуальной в современной аллергологии в связи с выраженностью клинических проявлений, распространенностью этого явления и отсутствием способов профилактики данных состояний у пациентов. Феномен перекрестно-аллергических реакций встречается при пыльцевой, бытовой, инсектной, пищевой аллергии, при сенсибилизации к аллергенам гельминтов и др. Многочисленные исследования подтвердили, что важную роль в развитии сенсибилизации ко многим пищевым продуктам, а также насекомым, является белок тропомиозин. В аллергенном спектре многих членистоногих (лат. Arthropoda - тип первичноротые, включающий насекомых, ракообразных, паукообразных и многоножек) выявлено наличие белка тропомиозина и отмечены различные перекрестно-аллергические реакции. Учитывая, что членистоногие занимают ведущее положение в составе фауны Земли, а также учитывая выраженный характер клинических проявлений аллергических реакций у больных на контакт с клещами домашней пыли и другими представителями типа Arthropoda, вопросу изучения перекрестно-аллергических реакций необходимо уделить особое внимание.

Полный текст

Доступ закрыт

Об авторах

Татьяна Германовна Федоскова

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

Email: tatger@mail.ru
доктор медицинских наук, зав. лабораторией молекулярных механизмов аллергии

Александр Игоревич Мартынов

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

кандидат медицинских наук, первый заместитель директора

Наталья Вячеславовна Кобизская

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

педиатр, аллерголог-иммунолог.

Дмитрий Владимирович Шабанов

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

научный сотрудник лаборатории молекулярных механизмов аллергии

Список литературы

  1. Федосеева ВН, Камышева ВА, Федоскова ТГ, Хаитов РМ, Некрасова О.В. Тропомиозин и перекрестно-аллергические реакции у больных с инсектной аллергией. Иммунология. 2006; (3): 189-192
  2. Федоскова ТГ, Лусс Л.В. Аллергия к нежалящим насекомым. Аллергология. 2004; (3): 49-56
  3. Hegna Ta, Legg DA, Moller OS, Van Roy P., Lerosey-Aubril R. The correct authorship of the taxon «Arthropoda». Arthropod Systematics and Phylogeny. 2013; 71(2): 71-74.
  4. Федосеева ВН, Федоскова ТГ, Камышева В.А. Внутрижилищные инсектные аллергены в этиопатогенезе атопической бронхиальной астмы. Материалы I. Национальной конференции РААКИ «Современные проблемы аллергологии, клинической иммунологии и иммунофармакологии». 1997: 596
  5. Желтикова ТМ, Антропова АБ, Петрова-Никитина А.Д. Экология жилых помещений и аллергия. Аллергология. 2004; (3): 37-39
  6. Желтикова ТМ, Тарасова ГД, Мокроносова М.А. Элиминация бытовых аллергенов как профилактика аллергических ринитов. Российская оториноларингология. 2003; (2): 221-225
  7. Celedon JC, Milton DK, Ramsey CD, Litonjua AA, Ryan L., Platts-Mills. Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J. Allergy Clin Immunol. 2007; 120: 144-149.
  8. Lodge CJ, Lowe AJ, Gurrin LC, Hill DJ, Hosking CSK, Rida U. et al. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J. Allergy Clin Immunol. 2011; 128: 782-788. doi: 10.1016/j.jaci.2011.06.038.
  9. Sancho AI, Wangorsch A., Jensen BM, Watson A., Alexeev Y. Responsiveness ofthe major birch allergen Bet v 1 scaffold to the gastric environment: impact on structure and allergenic activity. Molecular Nutrition & Food Research. 2011; 55: 1690-1699.
  10. Bohle B. The impact of pollen-related food allergens on pollen allergy. Allergy. 2007; 62: 3-10.
  11. Sanchez-Monge R., Lombardero M., Garcia-Selles FJ, Barber D., Salcedo G. Lipid-transfer proteins are relevant allergens in fruit allergy. J. Allergy Clin Immunol. 1999; 103: 514-519.
  12. Ferreira F., Hawranek T., Gruber P., Wopfner N., Maari A. Allergic cross-reactivity: from gene to the clinic. J. Allergy. 2004; 9: 243-267.
  13. Moreno-Aguilar C. Improving pollen immunotherapy: minor allergens and panallergens. Publicado en Allergol Immunopathol. 2008; 36: 26-30.
  14. Лусс ЛВ, Федоскова ТГ, Иванов В.Д. Перекрестно-аллергические реакции на инсектные аллергены у больных респираторно-аллергическими заболеваниями. Материалы IV Национальной конференции РААКИ «Современные проблемы аллергологии, клинической иммунологии и иммунофармакологии». 2001: 453
  15. Brown JH, Zhou Z., Reshetnikova L., Robinson H., Yammani RD, Tobacman LS, Cohen C. Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Natl Acad Sci. USA. 2005; 102: 18878-18883.
  16. Perry SV. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res Cell Motil. 2001; 22: 5-49.
  17. Gunning PW, Schevzov G., Kee AJ, Hardeman EC. Tropomiosin isoforms: divining rods for actin cytoskeletal function. Trends in Cell Biol. 2005; 15: 333-341.
  18. Phillips GN Jr, Filler JP, Cohen C. Tropomyosin crystal structure and muscle regulation. J. Mol Biol. 1986; 192: 111-131.
  19. Reese G., Jeoung BJ, Daul CB, Lehrer SB. Characterization of recombinant shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol. 1997; 113: 240-242.
  20. Reese G., Ayuso R., Lehrer SB. Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol. 1999; 119: 247-258.
  21. Daul CB, Slattery M., Morgan JE, Lehrer SB. Common crustacea allergens: identification of B-cell epitopes with the shrimp specific monoclonal antibodies. In: «Molecular Biology and Immunology of Allergens». 1993; 291: 3.
  22. Reese G., Daul CB, Lehrer SB. Antigenic analysis (IgE and monoclonal antibodies) of the major shrimp allergen Pen a 1 (tropomyosin) from Penaeus aztecus. Int Arch Allergy Immunol. 1995; 10: 245-247.
  23. Reese G., Tracey D., Daul CB, Lehrer SB. IgE and monoclonal antibody reactivities to the major shrimp allergen Pen a 1 (tropomyosin) and vertebrate tropomyosins. Adv Exp Med Biol. 1996; 409: 225-230.
  24. Daul CB, Slattery M., Reese G., Lehrer SB. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol. 1994; 105: 49-55.
  25. Shanti KN, Martin BM, Nagpal S., Metcalfe dD, Rao PV Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 1993; 151: 5354-5363.
  26. Marknell DeWitt A., Mattsson L., Lauer I., Reese G., Lidholm J. Recombinant tropomyosin from Penaeus aztecus (rPen a 1) for measurement of specific immunoglobulin E. antibodies relevant in food allergy to crustaceans and other invertebrates. Molec Nutr & Food Res. 2004; 48: 370-379.
  27. Ayuso R., Lehrer SB, Reese G. Identification of continuous, allergenic regions of the major shrimp allergen pen a 1 (tropomyosin). Int Arch Allergy Immunol. 2002; 127: 27-37.
  28. Mykles DL, Cotton JL, Taniguchi H., Sano K., Maeda Y. Cloning of tropomyosins from lobster (Homarus americanus) striated muscles: fast and slow isoforms may be generated from the same transcript. J. Muscle Res Cell Motil. 1998; 19: 105-115.
  29. Leung PS, Chen YC et al. Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen. Mol Mar Biol Biotechnol. 1998; 7: 12-20.
  30. Leung PS, Chen YC, Gershwin ME, Wong SH, Kwan HS, Chu KH. Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen. J. Allergy Clin Immunol. 1998; 102: 847-852.
  31. Miyazawa H., Fukamachi H., Inagaki Y., Reese G., Daul CB. Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin Immunol. 1996; 98: 948-953.
  32. Ishikawa M., Ishida M., Shimakura K., Nagashima Y. Shiomi K. Purification and IgE-binding epitopes of a major allergen in the gastropod Turbo cornutus. Biosci Biotechnol Biochem. 1998; 62: 1337-1343.
  33. Leung PS, Chu KH. cDNA cloning and molecular identification of the major oyster allergen from the Pacific oyster Crassostrea gigas. Clin Exp Allergy. 2001; 31: 1287-1294.
  34. Aki T., Kodama T., Fujikawa A., Miura K., Shigeta S., Wada T., Jyo T., Murooka Y., Oka S., Ono K. Immunochemical characterization of recombinant and native tropomyosins as a new allergen from the house dust mite, Dermatophagoides farinae. J. Allergy Clin Immunol. 1995; 96: 74-83.
  35. Asturias JA, Arilla MC, Gomez-Bayon N., Martinez A., Martinez J., Palacios R. Sequencing and high level expression in Escherichia coli of the tropomyosin allergen (Der p 10) from Dermatophagoides pteronyssinus. Biochim Biophys Acta. 1998; 1397: 27-30.
  36. Asturias JA, Gomez-Bayon N., Arilla MC, Martinez A., Palacios R., Sanchez-Gascon F. et al. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J. Immunol. 1999; 162: 4342-4348.
  37. Santos ABR, Obias KR, Ferriani VPL. Identification of tropomyosin from Periplaneta americana as a major cockroach allergen. J. Allergy Clin Immunol. 1999; 103: S122.
  38. Morgan JE, O’Neil CE, Daul CB, Lehrer SB. Species-specific shrimp allergens: RAST and RAST-inhibition studies. J. Allergy Clin Immunol. 1989; 83: 1112-1117.
  39. Fernandes J., Reshef A., Patton L., Ayuso R., Reese G., Lehrer S. Immunoglobulin E. antibody reactivity to the major shrimp allergen, tropomyosin, in unexposed Orthodox Jews. Clin Exp Allergy. 2003; 33: 956-961.
  40. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source ofhouse dust allergens. Nature. 1981; 289: 592-593.
  41. Tsai LC, Chao PL, Shen HD, Tang RB, Chang TC, Chang ZN et al. Isolation and characterization of a novel 98-kDa Dermatophagoides farinae mite allergen. J. Allergy Clin Immunol. 1998; 102: 295-303.
  42. Van Ree R., Antonicelli L., Akkerdaas JH, Garritani MS, Aal-berse RC, Bonifazi F. Possible induction of food allergy during mite immunotherapy. Allergy. 1996; 51: 108-113.
  43. Witteman AM, Akkerdaas JH, van Leeuwen J., van der Zee JS, Aalberse RC. Identification of a cross-reactive allergen (presumably tropomyosin) in shrimp, mite and insects. Int Arch Allergy Immunol. 1994; 105: 56-61.
  44. Jeong KY, Hwang H., Lee J., Lee IY, Kim DS, Hong CS et al. Allergenic characterization of tropomyosin from the dusky brown cockroach, Periplaneta fuliginosa. Clin Diagn Lab Immunol. 2004; 11: 680-685.
  45. Vuitton DA, Rance F., Paquin ML, Adessi B., Vigan M., Gomot A. et al. Cross-reactivity between terrestrial snails (Helix species) and house-dust mite (Dermatophagoidespteronyssinus). In vivo study. Allergy. 1998; 53: 144-150.
  46. Bernardini R., Mistrello G., Novembre E., Roncarolo D., Zanot-ta S., Lombardi E. et al. Cross-reactivity between IgE-binding proteins from Anisakis simplex and Dermatophagoides pteronyssinus. Int J. Immunopathol Pharmacol. 2005; 18(4): 671-675.
  47. Westritschnig K., Sibanda E., Thomas W., Auer H., Aspock H., Pittner G. et al. Analysis of the sensitization profile towards allergens in central Africa. Clin Exp Allergy. 2003; 33: 22-27.
  48. Bessot JC, Metz-Favre C., Rame JM, De Blay F., Pauli G. Tropomyosin or not tropomyosin, what is the relevant allergen in house dust mite and snail cross allergies? Eur Ann Allergy Clin Immunol. 2010; 42: 3-10.
  49. Yi FC, Cheong N., Shek PC, Wang DY, Chua KY, Lee BW. Identification of shared and unique immunoglobulin E. epitopes of the highly conserved tropomyosins in Blomia tropicalis and Dermatophagoides pteronyssinus. Clin Exp Allergy. 2002; 32: 1203-1210.
  50. Purohit A., Shao J., Degreef JM, van Leeuwen A., van Ree R., Pauli G., de Blay F. Role of tropomyosin as a cross-reacting allergen in sensitization to cockroach in patients from Martinique (French Caribbean island) with a respiratory allergy to mite and a food allergy to crab and shrimp. Eur Ann Allergy Clin Immunol. 2007; 39: 85-88.
  51. Asturias JA, Eraso E., Moneo I., Martinez A. Is tropomyosin an allergen in Anisakis? Allergy. 2000; 55: 898-899.
  52. Martinez A., Martinez J., Palacios R., Panzani R. Importance of tropomyosin in the allergy to household arthropods. Cross-reactivity with other invertebrate extracts. Allergol Immunopathol (Madr.). 1997; 25: 118-126.
  53. Farioli L., Losappio LM, Giuffrida MG, Pravettoni V., Micarelli G., Nichelatti M. et al. Mite-Induced Asthma and IgE Levels to Shrimp, Mite, Tropomyosin, Arginine Kinase, and Der p 10 Are the Most Relevant Risk Factors for Challenge-Proven Shrimp Allergy. Int Arch Allergy Immunol. 2017; 174: 133-143. doi: 10.1159/000481985.
  54. Ayuso R., Reese G., Leong-Kee S., Plante M., Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002; 129: 38-48.
  55. Федосеева ВН, Ильина НИ, Лусс ЛВ, Федоскова Т.Г. Роль сенсибилизации к аллергенам тараканов в этиологии атопической бронхиальной астмы. Материалы V. Национального конгресса Всероссийского научного общества пульмонологов. 1995: 56
  56. Sun BQ, Lai XX, Gjesing B., Spangfort MD, Zhong NS. Prevalence of sensitivity to cockroach allergens and IgE crossreactivity between cockroach and house dust mite allergens in Chinese patients with allergic rhinitis and asthma. Chin Med J. (Engl.). 2010; 123: 3540-3544.
  57. Ribeiro JC, Cunha LM, Sousa-Pinto B., Fonseca J. Mol Nutr Food Res. Allergic risks of consuming edible insects: A systematic review. 2018; 62. DOI: 10.1002. doi: 10.1002/mnfr.201700030.
  58. Федоскова ТГ, Лусс Л.В. Аллергены тараканов - важный фактор формирования аллергии к домашней пыли. Физиология и патология иммунной системы. 2004; (7): 12-15

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Фармарус Принт Медиа, 2018



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах