Developmental adaptations of neonatal neutrophils (review)

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Neutrophils are crucial component of innate immunity since they are the first to react to infectious agent invasion. There are differences between physiological, phenotypic and functional characteristics of neonatal and adult neutrophils. The severity of these changes is inversely proportional to gestational age, which indicates the dynamic development of these cells throughout pregnancy. Therefore, functional insufficiency of neonatal neutrophils associated with extremely high risk of developing neonatal infections and sepsis in premature infants.

Neonatal neutrophils are adapted to conditions that avoid unwanted triggering of pro-inflammatory factors. In addition, suppression of neutrophil functions is necessary for the creation of a healthy microbiome in the postpartum period, but at the same time it can be an obstacle to the development of a response when exposed to pathogenic organisms. Mechanisms underlying the normal transition of functionally limited neutrophils, capable of fully resisting pathogenic microorganisms, have not been established. This review discovers the features of neutrophil ontogenetic adaptation to intrauterine conditions and early neonatal period and their potential role in neonatal pathology.

Full Text

Restricted Access

About the authors

Vladimir E. Mukhin

Author for correspondence.

Liudmila L. Pankratyeva

Dmitry Rogachev NMRC PHOI of the MOH of Russia

ORCID iD: 0000-0002-1339-4155

MD, PhD, Professor of the Department of Pediatrics and Health Organization

Russian Federation, 1 Zamory Machela street, 117198, Moscow

Mikhail N. Yartsev

NRC – Institute of Immunology, FMBA of Russia

ORCID iD: 0000-0003-0952-2801

MD, PhD, Leader Researcher of the Department of Immunopathology of Children

Russian Federation, 24 Kashirskoe sh., 115522, Moscow

Nikolay N. Volodin

NMRC PHOI of the MOH of Russia

ORCID iD: 0000-0002-2667-8229

Acad. of RAS, MD, PhD, Professor, Professor of the Department of Pediatrics and Health Organization

Russian Federation, 1 Zamory Machela street, 117198, Moscow


  1. Cuenca AG, Joiner DN, Gentile LF, Cuenca AL, Wynn JL, Kelly-Scumpia KM, Scumpia PO, Behrns KE, Efron PA, Nacionales D, Lui C, Wallet SM, Reeves WH, Mathews CE, Moldawer LL. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis. J Immunol. 2015 Feb 1;194(3):1169-77. doi: 10.4049/jimmunol.1302676.
  2. Kemp AS, Campbell DE. The neonatal immune system. Seminars in Neonatology. 1996 May 1(2):67-75.
  3. Azizia M, Lloyd J, Allen M, Klein N, Peebles D. Immune status in very preterm neonates. Pediatrics. 2012 Apr;129(4):e967-74. doi: 10.1542/peds.2011-1579.
  4. Urlichs F, Speer CP. Neutrophil function in preterm and term infants. NeoReviews. 2004; 5(10): e417-e430. doi: 10.1542/neo.5-10-e417
  5. Makoni M, Eckert J, Anne Pereira H, Nizet V, Lawrence SM. Alterations in neonatal neutrophil function attributable to increased immature forms. Early Hum Dev. 2016 Dec;103:1-7. doi: 10.1016/j.earlhumdev.2016.05.016.
  6. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019 Jan 11;4(31):eaat6114. doi: 10.1126/sciimmunol.aat6114.
  7. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459-89. doi: 10.1146/annurev-immunol-020711-074942.
  8. Khaitov R.M. Immunology, M., Geotar Media Publishing Group, 2016. - 496 с. - ISBN 978-5-9704-3842-8. (in Russian)
  9. Slayton WB, Li Y, Calhoun DA, Juul SE, Iturraspe J, Braylan RC, Christensen RD. The first-appearance of neutrophils in the human fetal bone marrow cavity. Early Hum Dev. 1998 Dec;53(2):129-44. doi: 10.1016/s0378-3782(98)00049-8.
  10. Laver J, Duncan E, Abboud M, Gasparetto C, Sahdev I, Warren D, Bussel J, Auld P, O'Reilly RJ, Moore MA. High levels of granulocyte and granulocyte-macrophage colony-stimulating factors in cord blood of normal full-term neonates. J Pediatr. 1990 Apr;116(4):627-32. doi: 10.1016/s0022-3476(05)81617-8.
  11. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014 Jul;15(7):602-11. doi: 10.1038/ni.2921.
  12. Jiao J, Dragomir AC, Kocabayoglu P, Rahman AH, Chow A, Hashimoto D, Leboeuf M, Kraus T, Moran T, Carrasco-Avino G, Friedman SL, Merad M, Aloman C. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. J Immunol. 2014 Apr 1;192(7):3374-82. doi: 10.4049/jimmunol.1300237.
  13. Tak T, Tesselaar K, Pillay J, Borghans JA, Koenderman L. What's your age again? Determination of human neutrophil half-lives revisited. J Leukoc Biol. 2013 Oct;94(4):595-601. doi: 10.1189/jlb.1112571.
  14. Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun. 2013;5(4):304-14. doi: 10.1159/000350282.
  15. Edwards SW. Biochemistry and Physiology of the Neutrophil. Cambridge University Press, 2005.
  16. Schmutz N, Henry E, Jopling J, Christensen RD. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. J Perinatol. 2008 Apr;28(4):275-81. doi: 10.1038/
  17. Nittala S, Subbarao GC, Maheshwari A. Evaluation of neutropenia and neutrophilia in preterm infants. J Matern Fetal Neonatal Med. 2012;25(Suppl 5):100–103. doi: 10.3109/ 14767058.2012.715468.
  18. Christensen RD, Yoder BA, Baer VL, Snow GL. Early-onset neutropenia in small-for-gestational-age infants. Pediatrics. 2015;136(5): e1259–e1267. doi: 10.1542/peds.2015-1638.
  19. Liu G, Yang H, Chen X, Wang X, Chu Y. Modulation of neutrophil development and homeostasis. Curr Mol Med. 2013 Sep;13(8):1270-83. doi: 10.2174/15665240113139990062.
  20. Lawrence SM, Corriden R, Nizet V. Age-Appropriate Functions and Dysfunctions of the Neonatal Neutrophil. Front Pediatr. 2017 Feb 28;5:23. doi: 10.3389/fped.2017.00023.
  21. Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004 Oct;76(4):760-81. doi: 10.1189/jlb.0404216.
  22. Vorobjeva N.V., Kondratenko I.V., Vakhlyarskaya S.S., Chernyak B.V., Pinegin B.V. The role of the mitochondrial pore in the effector functions of human neutrophils. Immunologiya. 2019; 41 (1): 42–53. DOI: 10.33029/ 0206-4952-2020-41-1-42-53. (in Russian)
  23. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011 Jul 25;11(8):519-31. doi: 10.1038/nri3024.
  24. Fox SE, Lu W, Maheshwari A, Christensen RD, Calhoun DA. The effects and comparative differences of neutrophil specific chemokines on neutrophil chemotaxis of the neonate. Cytokine. 2005 Feb 7;29(3):135-40. doi: 10.1016/j.cyto.2004.10.007.
  25. Weinberger B, Laskin DL, Mariano TM, Sunil VR, DeCoste CJ, Heck DE, Gardner CR, Laskin JD. Mechanisms underlying reduced responsiveness of neonatal neutrophils to distinct chemoattractants. J Leukoc Biol. 2001 Dec;70(6):969-76. doi: 10.1016/j.cyto.2004.10.007
  26. Raymond SL, Mathias BJ, Murphy TJ, et al. Neutrophil chemotaxis and transcriptomics in term and preterm neonates. Transl Res. 2017;190:4-15. doi: 10.1016/j.trsl.2017.08.003
  27. Kim SK, Keeney SE, Alpard SK, Schmalstieg FC. Comparison of L-selectin and CD11b on neutrophils of adults and neonates during the first month of life. Pediatr Res. 2003 Jan;53(1):132-6. doi: 10.1203/00006450-200301000-00022.
  28. Carr R. Neutrophil production and function in newborn infants. Br J Haematol. 2000 Jul;110(1):18-28. doi: 10.1046/j.1365-2141.2000.01992.x.
  29. Moriguchi N, Yamamoto S, Isokawa S, Andou A, Miyata H. Granulocyte functions and changes in ability with age in newborns; Report no. 2: activation of granulocyte functions by cytokines. Pediatr Int. 2006 Feb;48(1):22-8. doi: 10.1111/j.1442-200X.2006.02150.x.
  30. Nussbaum C, Sperandio M. Innate immune cell recruitment in the fetus and neonate. J Reprod Immunol. 2011 Jun;90(1):74-81. doi: 10.1016/j.jri.2011.01.022.
  31. McEvoy LT, Zakem-Cloud H, Tosi MF. Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood. 1996 May 1;87(9):3929-33. PMID: 8611722.
  32. Anderson DC, Rothlein R, Marlin SD, Krater SS, Smith CW. Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11b/CD18)-dependent adherence reactions. Blood. 1990 Dec 15;76(12):2613-21. PMID: 1979926.
  33. Levy O. Impaired innate immunity at birth: deficiency of bactericidal/permeability-increasing protein (BPI) in the neutrophils of newborns. Pediatr Res. 2002 Jun;51(6):667-9. doi: 10.1203/00006450-200206000-00001.
  34. Decembrino L, DeAmici M, De Silvestri A, Manzoni P, Paolillo P, Stronati M. Plasma lactoferrin levels in newborn preterm infants with sepsis. J Matern Fetal Neonatal Med. 2017 Dec;30(23):2890-2893. doi: 10.1080/14767058.2016.1266479.
  35. Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. 2013 Aug;51(6):641-51. doi: 10.3109/13693786.2013.770607.
  36. DK, Roque-Barreira MC, Pereira-da-Silva G, Bernardes ES, Halbwachs-Mecarelli L. LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLoS One. 2011;6(10):e26004. doi: 10.1371/journal.pone.0026004.
  37. Sundqvist M, Osla V, Jacobsson B, et al. Cord blood neutrophils display a galectin-3 responsive phenotype accentuated by vaginal delivery. BMC Pediatr. 2013 Aug 21;13:128. doi: 10.1186/1471-2431-13-128.
  38. Haridan US, Mokhtar U, Machado LR, et al. A comparison of assays for accurate copy number measurement of the low-affinity Fc gamma receptor genes FCGR3A and FCGR3B. PLoS One. 2015 Jan 16;10(1):e0116791. doi: 10.1371/journal.pone.0116791.
  39. Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol. 2015 Jan 21;5:674. doi: 10.3389/fimmu.2014.00674.
  40. Filias A, Theodorou GL, Mouzopoulou S, Varvarigou AA, Mantagos S, Karakantza M. Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr. 2011 Apr 14;11:29. doi: 10.1186/1471-2431-11-29.
  41. Falconer AE, Carr R, Edwards SW. Impaired neutrophil phagocytosis in preterm neonates: lack of correlation with expression of immunoglobulin or complement receptors. Biol Neonate. 1995;68(4):264-9. doi: 10.1159/000244245
  42. Källman J, Schollin J, Schalèn C, Erlandsson A, Kihlström E. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998 Jan;78(1):F46-50. doi: 10.1136/fn.78.1.f46.
  43. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev. 2020 Jan 29;1(1):CD001239. doi: 10.1002/14651858.CD001239.pub6.
  44. Allen RC. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence. J Immunol Res. 2015;2015:794072. doi: 10.1155/2015/794072.
  45. Grunwell JR, Giacalone VD, Stephenson S, Margaroli C, Dobosh BS, Brown MR, Fitzpatrick AM, Tirouvanziam R. Neutrophil Dysfunction in the Airways of Children with Acute Respiratory Failure Due to Lower Respiratory Tract Viral and Bacterial Coinfections. Sci Rep. 2019 Feb 27;9(1):2874. doi: 10.1038/s41598-019-39726-w.
  46. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5;303(5663):1532-5. doi: 10.1126/science.1092385.
  47. Mesa MA, Vasquez G. NETosis. Autoimmune Dis. 2013;2013:651497. doi: 10.1155/2013/651497.
  48. Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest. 2016 May 2;126(5):1612-20. doi: 10.1172/JCI84538.
  49. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is "NETosis" = necroptosis? Cell Mol Life Sci. 2016 Jun;73(11-12):2211-9. doi: 10.1007/s00018-016-2195-0.
  50. Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA, Weyrich AS, Zimmerman GA. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009 Jun 18;113(25):6419-27. doi: 10.1182/blood-2008-07-171629.
  51. Byrd AS, O'Brien XM, Laforce-Nesbitt SS, Parisi VE, Hirakawa MP, Bliss JM, Reichner JS. NETosis in Neonates: Evidence of a Reactive Oxygen Species-Independent Pathway in Response to Fungal Challenge. J Infect Dis. 2016 Feb 15;213(4):634-9. doi: 10.1093/infdis/jiv435.
  52. Bizzarro MJ, Dembry LM, Baltimore RS, Gallagher PG. Changing patterns in neonatal Escherichia coli sepsis and ampicillin resistance in the era of intrapartum antibiotic prophylaxis. Pediatrics. 2008 Apr;121(4):689-96. doi: 10.1542/peds.2007-2171.
  53. Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sánchez PJ, Ambalavanan N, Benjamin DK Jr; NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009 Jan;123(1):58-66. doi: 10.1542/peds.2007-3423.
  54. Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol. 2014 Apr;15(4):307-10. doi: 10.1038/ni.2847.
  55. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010 Jul;23(3):590-615. doi: 10.1128/CMR.00078-09.
  56. Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E, Shaikh N, Hoffmann JA, Linneman LA, Hamvas A, Khanna G, Rouggly-Nickless LC, Ndao IM, Shands BA, Escobedo M, Sullivan JE, Radmacher PG, Shannon WD, Tarr PI. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2016 May 7;387(10031):1928-36. doi: 10.1016/S0140-6736(16)00081-7.
  57. Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, Mazmanian SK. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014 Mar 12;15(3):374-81. doi: 10.1016/j.chom.2014.02.006.
  58. Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017 Jan 12;129(2):171-176. doi: 10.1182/blood-2016-06-723742.
  59. Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017 Jan 12;129(2):171-176. doi: 10.1182/blood-2016-06-723742.
  60. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016 Jun 2;165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041.
  61. Vieira AT, Galvão I, Macia LM, Sernaglia ÉM, Vinolo MA, Garcia CC, Tavares LP, Amaral FA, Sousa LP, Martins FS, Mackay CR, Teixeira MM. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J Leukoc Biol. 2017 Jan;101(1):275-284. doi: 10.1189/jlb.3A1015-453RRR.
  62. Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, Lu L, Wang D. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity. 2016 Oct 18;45(4):802-816. doi: 10.1016/j.immuni.2016.09.008.
  63. Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol. 2005 Dec;78(6):1408-18. doi: 10.1189/jlb.0605289.
  64. Contrino J, Krause PJ, Slover N, Kreutzer D. Elevated interleukin-1 expression in human neonatal neutrophils. Pediatr Res. 1993 Sep;34(3):249-52. doi: 10.1203/00006450-199309000-00002.
  65. Wynn JL, Levy O. Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin Perinatol. 2010 Jun;37(2):307-37. doi: 10.1016/j.clp.2010.04.001.
  66. Hou PC, Yu HR, Kuo HC, Wang L, Lin LY, Sheen JM, Hsu TY, Ou CY, Jheng YJ, Yang KD, Cheng WH. Different modulating effects of adenosine on neonatal and adult polymorphonuclear leukocytes. ScientificWorldJournal. 2012;2012:387923. doi: 10.1100/2012/387923.
  67. Sundqvist M, Osla V, Jacobsson B, Rudin A, Sävman K, Karlsson A. Cord blood neutrophils display a galectin-3 responsive phenotype accentuated by vaginal delivery. BMC Pediatr. 2013 Aug 21;13:128. doi: 10.1186/1471-2431-13-128.
  68. Liu W, Yan M, Sugui JA, Li H, Xu C, Joo J, Kwon-Chung KJ, Coleman WG, Rodgers GP. Olfm4 deletion enhances defense against Staphylococcus aureus in chronic granulomatous disease. J Clin Invest. 2013 Sep;123(9):3751-5. doi: 10.1172/JCI68453.
  69. Welin A, Amirbeagi F, Christenson K, Björkman L, Björnsdottir H, Forsman H, Dahlgren C, Karlsson A, Bylund J. The human neutrophil subsets defined by the presence or absence of OLFM4 both transmigrate into tissue in vivo and give rise to distinct NETs in vitro. PLoS One. 2013 Jul 29;8(7):e69575. doi: 10.1371/journal.pone.0069575.
  70. Hanna N, Vasquez P, Pham P, Heck DE, Laskin JD, Laskin DL, Weinberger B. Mechanisms underlying reduced apoptosis in neonatal neutrophils. Pediatr Res. 2005 Jan;57(1):56-62. doi: 10.1203/01.PDR.0000147568.14392.F0.
  71. Kotecha S, Mildner RJ, Prince LR, Vyas JR, Currie AE, Lawson RA, Whyte MK. The role of neutrophil apoptosis in the resolution of acute lung injury in newborn infants. Thorax. 2003 Nov;58(11):961-7. doi: 10.1136/thorax.58.11.961.

Supplementary files

There are no supplementary files to display.



Abstract: 104

Article Metrics

Metrics Loading ...



Copyright (c) Russian Journal of Allergy

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies