Evolutionary background of allergic reactivity: mast cells, FcεRI, IgE - three components of the effector phase of the allergic response



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The literature data on the evolution of the main obligatory participants in the effector phase of the IgE-mediated allergic response are presented: mast cells/basophils, immunoglobulin E, and high affinity receptor for the Fcε fragment (FcεRI). Allergic reactivity is considered as the most recent evolutionary immunologically-mediated acquisition of mammals. It is aimed at recognizing small amounts of allergen entering the body in a certain time regime, and organizing an allergen-specific inflammation that carries features of elimination function. The most biologically justified way to prevent allergies is to restore the function of barrier systems and, accordingly, to prevent the need to develop an allergic response.

Full Text

Restricted Access

About the authors

I S Gushchin

NRC Institute ofImmunology FMBA of Russia

Email: igushchin@yandex.ru

References

  1. Гущин И.С. Об элементах биологической целесообразности аллергической реактивности. Патологическая физиология и экспериментальная терапия. 1979;(4):3-11
  2. Hellman LT, Akula S., Thorpe M., Fu Z. Tracing the origins of IgE, mast cells, and allergies by studies of wild animals. Front immunol. 2017;8:1749-1770. doi: 10.3389/fim-mu.2017.01749.
  3. Гущин ИС, Курбачева О.М. Аллергия и аллергенспецифическая иммунотерапия. М.: «Фармарус Принт Медиа»; 2010
  4. Гущин И.С. Эволюционное предупреждение: аллергия. Патологическая физиология и экспериментальная терапия. 2014;(1):57-67
  5. Sibilano R., Frossi B., Pucillo CE. Mast cell activation: a complex interplay of positive and negate signaling pathways. Eur J. Immunol. 2014;44:2558-2566. doi: 10.1002/eji.201444546.
  6. Voehringer D. Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013;13:362-375. doi: 10.1038/nri3427.
  7. De Barros CM, Andrade LR, Allodi S., Viskov C., Mourier PA, Cavalcante MC et al. The Hemolymph of the ascidian Styela plicata (Chordata-Tunicata) contains heparin inside basophil-like cells and a unique sulfated galactoglucan in the plasma. J. Biol Chem. 2007;282:1615-1626. doi: 10.1074/jbc. M604056200.
  8. Cavalcante MC, de Andrade LR, Du Bocage Santos-Pinto C., Straus AH, Takahashi HK, Allodi S. et al. Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata). J. Struct Biol. 2002;137:313-321.
  9. Thompson H., Shimeld SM. Transmission and scanning electron microscopy of the accessory cells and chorion during development of Ciona intestinalis type B. embryos and the impact of their removal on cell morphology. Zoolog Sci. 2015;32:217-222. doi: 10.2108/zs140231.
  10. Шапошникова ТГ, Павлов А.Е. Получение фракции тестальных клеток, окружающих ооциты, у асцидии Styla rustica. Журнал эволюционной биохимии и физиологии. 2007;43(2):204-205
  11. Шапошникова ТГ, Столбовая АЮ, Пономарцев НВ, Подгорная О.И. Иммуно- и гистохимические характеристики морулярных и тестальных клеток трех видов асцидий. Цитология. 2011;53:986-991
  12. Wong GW Zhuo L., Kimata K., Lam BK, Satoh N., Stevens RL. Ancient origin of mast cells. Biochem Biophys Res Commun. 2014;451:314-318. doi: 10.1016/j.bbrc.2014.07.124.
  13. Dobson JT, Seibert J., Teh EM, Da’as S., Fraser RB, Paw BH et al. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood. 2008;112:2969-2972. DOI: 10.1182/ blood-2008-03-145011.
  14. Da’as S., Teh EM, Dobson JT, Nasrallah GK, McBride ER, Wang H. et al. Zebrafish mast cells possess an FcRI-like receptor and participate in innate and adaptive immune responses. Dev Comp Immunol. 2011;35:125-134. DOI: 10.1016/j. dci.2010.09.001.
  15. Mulero I., Sepulcre MP, Meseguer J., Garcia-Ayala A., Mulero V. Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc Natl Acad Sci USA. 2007;104:19434-19439. DOI: 10.1073/ pnas.0704535104.
  16. Mead KF, Borysenko M., Findlay SR. Naturally abundant basophils in the snapping turtle, Chelydra serpentina, possess cytophilic surface antibody with reaginic function. J. Immunol. 1983;130:334-340.
  17. Zielonka S., Empting M., Grzeschik J., Könning D., Barelle CJ, Kolmar H. Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs. 2015;7:15-25. doi: 10.4161/19420862.2015.989032.
  18. Zhao Y. Pan-Hammarström Q., Yu S., Wertz N., Zhang X., Li N. et al. Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis. Proc Natl Acad Sci USA. 2006;103:12087-12092. doi: 10.1073/pnas.0600291103.
  19. Гущин И.С. IgE-опосредованная гиперчувствительность как ответ на нарушение барьерной функции тканей. Иммунология. 2015;(1):45-52
  20. Zhang X., Calvert RA, Sutton BJ, Doré kA. IgY: a key isotype in antibody evolution. Biol Rev Camb Philos Soc. 2017;92:2144-2156. doi: 10.1111/brv.12325.
  21. Zhao Y., Rabbani H., Shimizu A., Hammarström L. Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted alpha gene upstream of a condensed upsilon gene. Immunology. 2000;101:348-353. doi: 10.1046/j.1365-2567.2000.00106.x.
  22. Leslie GA, Clem LW Phylogeny of immunoglobulin structure and function. III. Immunoglobulins of the chicken. J. Exp Med. 1969;130:1337-1352.
  23. Wei Z., Wu Q., Ren L., Hu X., Guo Y. Warr GW et al. Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. J. Immunol. 2009;183:3858-3864. doi: 10.4049/jimmunol.0803251.
  24. Gambón-Deza F., Sánchez-Espinel C., Magadán-Mompó S. The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus). Mol Immunol. 2009;46:2515-2523. doi: 10.1016/j.molimm.2009.05.025.
  25. Taylor AI, Fabiane SM, Sutton BJ, Calvert RA. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry. 2009;48:558-562. doi: 10.1021/bi8019993.
  26. Warr GW, Magor KE, Higgins DA. IgY clues to the origins of modern antibodies. Immunol Today. 1995;16:392-398. doi: 10.1016/0167-5699(95)80008-5.
  27. Deza FG, Espinel CS, Beneitez JV. A novel IgA-like immunoglobulin in the reptile Eublepharis macularius. Dev Comp Immunol. 2007;31:596-605. doi: 10.1016/j.dci.2006.09.005.
  28. Mashoof S., Goodroe A., Du CC, Eubanks JO, Jacobs N., Steiner JM et al. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol. 2013;6:358-368. dOI: 10.1038/ mi.2012.78.
  29. Schaerlinger B., Frippiat JP. IgX antibodies in the urodele amphibian Ambystoma mexicanum. Dev Comp Immunol. 2008;32:908-915. doi: 10.1016/j.dci.2008.01.001.
  30. Akula S., Mohammadamin S., Hellman L. Fc receptors for immunoglobulins and their appearance during vertebrate evolution. PLoS One. 2014;9(5):e96903. doi: 10.1371/journal. pone.0096903.
  31. Dias da Silva W., Tambourgi DV IgY: a promising antibody for use in immunodiagnostic and in immunotherapy. Vet Immunol Immunopathol. 2010;135:173-180. DOI: 10.1016/j. vetimm.2009.12.011.
  32. Kumar S1, Hedges SB. A molecular timescale for vertebrate evolution. Nature. 1998;392:917-920.
  33. Vernersson M., Aveskogh M., Hellman L. Cloning of IgE from the echidna (Tachyglossus aculeatus) and a comparative analysis of epsilon chains from all three extant mammalian lineages. Dev Comp Immunol. 2004;28:61-75.
  34. Fc Receptors. M. Daëron, F. Nimmerjahn (eds.). Series: Current Topics in Microbiology and Immunology 382. Springer International Publishing; 2014. doi: 10.1007/978-3-319-07911-0.
  35. Ярилин А.А. Иммунология: учебник. М.: ГЭОТАР-Медиа; 2010
  36. Nimmerjahn F., Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34-47. doi: 10.1038/nri2206.
  37. Van der Poel CE, Spaapen RM, van de Winkel JG, Leusen JH. Functional characteristics of the high affinity IgG receptor, FcyRI. J. Immunol. 2011;186:2699-2704. DOI: 10.4049/ jimmunol.1003526.
  38. Fayngerts SA, Najakshin AM, Taranin AV Species-specific evolution of the FcR family in endothermic vertebrates. Immunogenetics. 2007;59:493-506. doi: 10.1007/s00251-007-0208-8.
  39. Simtong P., Romphruk AV, Traum A., Burg-Roderfeld M., Bein G., Jakubowski K. et al. Molecular and functional characterization of Fcy receptor Illb-ligand interaction: implications for neutrophil-mediated immune mechanisms in malaria. Infect Immun. 2018;86. pii: e00924-17. doi: 10.1128/IAI.00924-17.
  40. Yamashita T. Suzuki R., Backlund PS, Yamashita Y., Yergey AL, Rivera J. Differential dephosphorylation of the FcRgamma immunoreceptor tyrosine-based activation motif tyrosines with dissimilar potential for activating Syk. J. Biol Chem. 2008;283:28584-28594. doi: 10.1074/jbc.M802679200.
  41. Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227:150-160. doi: 10.1111/j.1600-065X.2008.00720.x.
  42. Blank U., Ra C., Miller L., White K., Metzger H., Kinet JP. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature. 1989;337:187-189. doi: 10.1038/337187a0.
  43. Liang Y., Tedder TF. Identification of a CD20-, Fcepsilon-Rlbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics. 2001;72:119-127. doi: 10.1006/geno.2000.6472.
  44. Davis RS. Fc receptor-like molecules. Annu Rev Immunol. 2007;25:525-560. doi: 10.1146/annurev.immu-nol.25.022106.141541.
  45. Ehrhardt GR, Cooper MD. Immunoregulatory roles for Fc receptor-like molecules. Curr Top Microbiol Immunol. 2011;350:89-104. doi: 10.1007/82_2010_88.
  46. Rostamzadeh D., Kazemi T., Amirghofran Z., Shabani M. Update on Fc Receptor-Like (FCRL) family: new immunoregulatory players in health and diseases. Expert Opin Ther Targets. 2018;22:487-502. doi: 10.1080/14728222.2018.1472768.
  47. Asano M., Komiyama K. Polymeric immunoglobulin receptor. J. Oral Sci. 2011;53:147-156. doi: 10.2334/josnusd.53.147.
  48. Rombout JH, van der Tuin SJ, Yang G., Schopman N., Mroczek A., Hermsen T. et al. Expression of the polymeric Immunoglobulin Receptor (plgR) in mucosal tissues of common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2008;24:620-628. doi: 10.1016/j.fsi.2008.01.016.
  49. Feng lN, Lu DQ, Bei JX, Chen JL, Liu Y. Zhang Y. et al. Molecular cloning and functional analysis of polymeric immunoglobulin receptor gene in orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B. Biochem Mol Biol. 2009;154:282-289. doi: 10.1016/j.cbpb.2009.07.003.
  50. Hamuro K., Suetake H., Saha NR, Kikuchi K., Suzuki Y. A teleost polymeric Ig receptor exhibiting two Ig-like domains transports tetrameric IgM into the skin. J. Immunol. 2007;178:5682-5689. doi: 10.4049/jimmunol.178.9.5682.
  51. Bakos MA, Kurosky A., Goldblum Rm. Characterization of a critical binding site for human polymeric Ig on secretory component. J. Immunol. 1991;147:3419-3426.
  52. Frutiger S., Hughes GJ, Hanly WC, Kingzette M., Jaton JC. The amino-terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J. Biol Chem. 1986;261:16673-16681.
  53. Viertlboeck BC, Schweinsberg S., Hanczaruk MA, Schmitt R., Du Pasquier L., Herberg FW et al. The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl Acad Sci USA. 2007;104:11718-11723. doi: 10.1073/pnas.0702011104.
  54. Arnon TI, Kaiser JT, West AP Jr, Olson R., Diskin R., Viertlboeck BC et al. The crystal structure of CHIR-AB 1 : a primordial avian classical Fc receptor. J. Mol Biol. 2008;381:1012-1024. doi: 10.1016/j.jmb.2008.06.082.
  55. Taylor AI, Beavil RL, Sutton BJ, Calvert RA. A monomeric chicken IgY receptor binds IgY with 2:1 stoichiometry. J. Biol Chem. 2009;284:24168-24175. doi: 10.1074/jbc. M109.020263.
  56. Pürzel J., Schmitt R., Viertlboeck BC, Göbel TW Chicken IgY binds its receptor at the CH3/CH4 interface similarly as the human IgA: Fc alpha RI interaction. J. Immunol. 2009;183:4554-4559. doi: 10.4049/jimmunol.0901699.
  57. Windau K., Viertlboeck BC, and Göbel TW The turkey Ig-like receptor family: identification, expression and function. PLoS One. 2013;8(3):e59577. doi: 10.1371/journal.pone.0059577.
  58. He X. Bjorkman PJ. Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY. Proc Natl Acad Sci USA. 2011;108:12431-12436. doi: 10.1073/pnas.1106925108.
  59. Viertlboeck BC, Schmitt R., Hanczaruk MA, Crooijmans RP, Groenen MA, Göbel TW. A novel activating chicken IgY FcR is related to leukocyte receptor complex (LRC) genes but is located on a chromosomal region distinct from the LRC and FcR gene clusters. J. Immunol. 2009;182:1533-1540. doi: 10.4049/jimmunol.182.3.1533.
  60. Schreiner B, Viertlboeck BC, Göbel TW. A striking example of convergent evolution observed for the ggFcR:IgY interaction closely resembling that of mammalian FcR:IgG. Dev Comp Immunol. 2012;36:566-571. doi: 10.1016/j.dci.2011.09.013.
  61. Sutton BJ, Davies AM. Structure and dynamics of IgE-receptor interactions: Fc RI and CD23/Fc RII. Immunol Rev. 2015;268:222-235. doi: 10.1111/imr. 12340.
  62. Vernersson M., Aveskogh M., Munday B., Hellman L. Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (II); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus. Eur J. Immunol. 2002;32:2145-2155. doi: 10.1002/1521-4141(200208)32:8<2145::AID-IM-MU2145>3.0.CO;2-I.
  63. Гущин И.С. Преодоление аллергенами тканевого барьера - решающая форма предрасположения к аллергии. Патологическая физиология и экспериментальная терапия. 2009;(1):8-13
  64. Гущин И.С. Эпидермальный барьер и аллергия. Российский Аллергологический Журнал. 2007;(2):3-16

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 2018



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies