SVOYSTVA I KLINIChESKOE ZNAChENIERASTITEL'NYKh ALLERGENOV



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

представления об аллергии к растительным белкам. Вместе с тем использование этих достижений в
практике остается ограниченным. Данный обзор посвящен свойствам и клиническому значению
растительных аллергенов, а также возможным подходам к диагностике и элиминационной диете.

About the authors

A N Pampura

N G Konyukova

References

  1. Pumphrey R.S., Stanworth S.J. The clinical spectrum of anaphylaxis in northwest England. Clin. Exp. Allergy. 1996, v. 26, p. 13641370.
  2. Zuidmeer L., Goldhahn K., Rona R.J. et al. The prevalence of plant food allergies: a systematic review. J. Allergy Clin. Immunol. 2008, v. 121, p. 12101218.
  3. Alvarado M.I., Perez M. Study of food allergy in the Spanish population. Allergol. Immunopathol (Madr), 2006, v. 34, p. 185193.
  4. Grundy J., Matthews S., Bateman B. et al. Rising prevalence of allergy to peanut in children: Data from 2 sequential cohorts. J. Allergy Clin. Immunol. 2002, v. 110, p. 784789.
  5. Monsalve R. I., Villalba, M., Rodriguez, R. Allergy to mustard seeds: the importance of 2S albumins as food allergens [http:/ /www.foodallergens.de]. Internet Symposium on Food Allergens. 2001, v. 3, p. 5769
  6. Derby C.J., Gowland M.H., Hourihane J.O. Sesame allergy in Britain: a questionnaire survey of members of the Anaphylaxis Campaign. Pediatr Allergy Immunol. 2005, v. 16, p. 171175.
  7. Murzin A.G., Brenner S.E. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 1995, v. 7, p. 536540.
  8. Lo Conte L, Brenner S.E. SCOP database in 2002: refine ments accommodate structural genomics. Nucleic Acids Res., 2002, v. 1, p. 264267.
  9. R.C. Structural biology of allergens. J. Allergy Clin. Immunol. 2000, v. 106, p. 228238.
  10. Breiteneder H., Ebner C. Molecular and biochemical classi fication of plantderived food allergens. J. Allergy Clin. Immunol. 2000, v. 106, p. 2736.
  11. Breiteneder H., Ebner C. Atopic allergens of plant foods. Curr. Opin. Allergy Clin. Immunol. 2001, v. 1, p. 261267.
  12. Shewry P.R., Beaudoin F., Jenkins J. et al. Plant protein families and their relationships to food allergy. Biochem. Soc. Trans. 2002, v. 30, p.906910.
  13. Mills ENC, Madsen C., Shewry P.R. et al. Food allergens of plant origin-their molecular and evolutionary relationships. Trends Food Sci. Technol. 2003, v. 14, p. 145156.
  14. Breiteneder H., Radauer С. A classification of plant food allergens J. Allergy Clin. Immunol. 2004, v. 113, p. 821830.
  15. Asero R. Plant Food Allergies: A Suggested Approach to AllergenResolved Diagnosis in the Clinical Practice by Identifying Easily Available Sensitization Markers: Int. Arch. Allergy Immunol. 2005, v. 138, p. 111.
  16. Dunwell, J. M. 1998. Sequence analysis of the cupin gene family in Synechocystis PCC6803. Microb. Comp. Genom. v. 3, p. 141148.
  17. Burks A.W., Williams L.W. Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. J. Allergy Clin. Immunol. 1991, v. 88, p. 172179.
  18. Astier C., Morisset M., Roitel O. et al. Predictive value of skin prick tests using recombinant allergens for diagnosis of peanut allergy. J. Allergy Clin. Immunol. 2006, v. 118, p. 250256
  19. Shin D.S., Compadre CM. Biochemical and structural analysis of the IgE binding sites on ara h1, an abundant and highly allergenic peanut protein. J. Biol. Chem. 1998, v. 273, p. 1375313759.
  20. Maleki S.J., Kopper R.A. Structure of the major peanut allergen Ara h 1 may protect IgEbinding epitopes from degradation. J. Immunol. 2000, v. 1, p. 58445849.
  21. Kang I.H., Gallo M., Tillman B.L. Distribution of allergen composition in peanut (Arachis hypogaea l.) and wild progenitor (Arachis) species. Crop. Science., 2007, v. 47, p. 9971003.
  22. Maloney J.M., Chapman M.D., Sicherer S.H. Peanut aller gen exposure through saliva: assessment and interventions to reduce exposure. J. Allergy Clin. Immunol. 2006, v. 118, p. 719724.
  23. Barre A., Borges J.P., Rouge P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgEbinding crossreactivity. Biochimie. 2005, v. 87, p. 499506.
  24. Wensing M., Knulst A.C., Piersma S., Patients with anaphylaxis to pea can have peanut allergy caused by cross reactive IgE to vicilin (Ara h 1). J. Allergy Clin. Immunol. 2003, v. 111, p. 420424
  25. Wang F., Robotham J.M. Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family.J. Allergy Clin. Immunol. 2002, v. 110, p. 160166.
  26. Sicherer S.H., Furlong T.J., MunosFurlong A. et al. A volun tary registry for peanut and tree nut allergy: characteristics of the first 5149 registrants. J. Allergy Clin. Immunol. 2001, v. 108, p. 128132.
  27. Teuber S.S., Jarvis K.C., Dandekar A.M. et al. Identification and cloning of a complementary DNA encoding a vicilinlike proprotein, jug r 2, from English walnut kernel (Juglans regia), a major food allergen. J. Allergy Clin. Immunol. 1999, v. 104, p. 13111320.
  28. Beyer K., Bardina L., Grishina G. Identification of sesame seed allergens by 2dimensional proteomics and Edman sequencing: seed storage proteins as common food allergens.J. Allergy Clin. Immunol. 2002, v. 110, p. 154159.
  29. Koppelman S.J., Knol E.F., Vlooswijk R.A. et al. Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization. Allergy. 2003, v. 58, p. 11441151.
  30. Shreffler W.G., Beyer K., Chu T.H. et al. Microarray immunoassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J. Allergy Clin. Immunol. 2004, v. 113, p. 776782.
  31. van Boxtel E.L., van den Broek L.A., Koppelman S.J. et al. Legumin allergens from peanuts and soybeans: effects of denaturation and aggregation on allergenicity. Mol. Nutr Food Res., 2008, v. 52, p. 674682.
  32. Beyer K., Grishina G., Bardina L. et al. Identification of an 11S globulin as a major hazelnut food allergen in hazelnut induced systemic reactions. J. Allergy Clin. Immunol. 2002, v. 110, p. 517523.
  33. Wang F., Robotham J.M., Teuber S.S. et al. Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family. Int. Arch. Allergy Immunol. 2003, v. 132, p. 2739.
  34. SanchezMonge R., Pascual C., DiazPerales A., Fernandez et al. Isolation and characterization of relevant allergens from boiled lentils. J. Allergy Clin. Immunol. 2000, v. 106, p 955961.
  35. Asero R., Mistrello G., Roncarolo D. et al. Walnutinduced anaphylaxis with crossreactivity to hazelnut and Brazil nut.J. Allergy Clin. Immunol. 2004, v. 11, p. 358360.
  36. Teuber S.S., Peterson W.R. Systemic reaction to coconut (Cocos nucifera L.) in two subjects with tree nut hyper sensitivity and demonstration of crossreactivity to legumin like seed storage proteins: new coconut and walnut food allergens. J. Allergy Clin. Immunol. 1999, v. 103, p. 11801185.
  37. Nguyen S.A., More D.R., Whisman B.A. et al. Cross reactivity between coconut and hazelnut proteins in a patient with coconut anaphylaxis. Ann. Allergy Asthma Immunol. 2004, v. 92, p. 281-284.
  38. De Leon M.P., Glaspole J.N., Drew A.C. et al.Immunological analysis of the allergenic crossreactivity between peanut and tree nuts. Clin. Exp. Allergy. 2003, v. 33, p. 12731280.
  39. Fernandez C., Fiandor A., Martinez Garate A. et al. Allergy to pistachio: crossreactivity between pistachio and other Anacardiaceae. Clin. Exp. Allergy. 1995, v. 25, p.12541259
  40. Schocker F., Luttkopf D., Scheurer S. et al. Recombinant lipid transfer protein Cor a 8 from hazelnut: a new tool for in vitro diagnosis of potentially severe hazelnut allergy. J. Allergy Clin. Immunol. 2004, v. 113, p. 141147.
  41. Shewry P.R., Beaudoin F. et al. Plant protein families and their relationships to food allergy. Biochem. Soc. Trans., 2002, v. 30, p. 906910.
  42. Tanabe S., Arai S., Yanagihara Y. et al. Major wheat allergen has a GlnGlnGlnProPro motif identified as an IgE binding epitope. Biochem. Biophys. Res. Commun., 1996, v. 219, p. 290293
  43. Sandiford C.P., Tatham A.S., Fido R. et al. Newman TaylorAJ. Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity. Clin. Exp. Allergy. 1997, v. 27, p. 11201129.
  44. Palosuo K., Varjonen E., Kekki O.M. et al. Wheat omega5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J. Allergy Clin. Immunol. 2001, v. 108, p. 634638.
  45. Matsuo H., Kohno K., Morita E. Molecular cloning, recombinant expression and w5 gliadin, a major allergen in wheatdependent IgEbinding epitope of exerciseinduced anaphylaxis. FEBS Journal. 2005, v. 272, p. 44314438.
  46. Axelsson I.G., Ihre E., Zetterstrom O. Anaphylactic reactions to sunflower seed. Allergy. 1994, v. 49, p. 517520.
  47. Pastorello E.A., Pompei C., Pravettoni V. et al. Lipid transfer proteins and 2S albumins as allergens. Allergy. 2001, v. 56, Suppl. 67, p. 4547.
  48. Nordlee J.A., Taylor S.L., Townsend J.A. Identification of a Brazilnut allergen in transgenic soybeans. N. Engl. J. Med., 1996, v. 14, p. 688692.
  49. HoffmannSommergruber K. Pathogenesisrelated (PR) proteins identified as allergens. Biochem. Soc. Trans., 2002, v. 30, p. 930935.
  50. Edvera A. Pathogenesisrelated proteins: research progress in the last 15 years. Gen. Appl. Plant Physiology. 2005, v. 31, p. 105124.
  51. van Ree R. Clinical importance of nonspecific lipid transfer proteins as food allergens. Biochem. Soc. Trans., 2002, v. 30, p. 910913
  52. TassinMoindrot S., Caille A., Douliez J.P. et al. The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur. J. Biochem., 2000, v. 267, p. 11171124.
  53. Borges J.P., Jauneau A., Brule C. et al. The lipid transfer proteins (LTP) essentially concentrate in the skin of Rosaceae fruits as cell surface exposed allergens. Plant Physiol. Biochem., 2006, v. 44, p. 535542.
  54. Carnes J., FernandezCaldas E., Gallego M.T. et al. Pru p 3 (LTP) content in peach extracts. Allergy, 2002, v. 57, p. 10711075
  55. Brenna O.V., Pastorello E.A., Farioli L. et al. Presence of allergenic proteins in different peach (Prunus persica) cultivars and dependence of their content on fruit ripening.J. Agric. Food Chem. 2004, v. 52, p.79978000.
  56. Pastorello E.A., Pravettoni V., Farioli L. et al. Clinical role of a lipid transfer protein that acts as a new applespecific allergen. J Allergy Clin Immunol., 1999, v. 104, p. 10991106.
  57. Pastorello E.A., D'Ambrosio F.P., Pravettoni V. et al. Evidence for a lipid transfer protein as the major allergen of apricot. J. Allergy Clin. Immunol. 2000, v. 105, p. 371377.
  58. Kivity S., Dunner K., Marian Y. The pattern of food hypersensitivity in patients with onset after 10 years of age. Clin. Exp. Allergy. 1994, v. 24, p. 1922.
  59. DiazPerales A., Sanz M.L., GarciaCasado G. et al. Recombinant Pru p 3 and natural Pru p 3, a major peach allergen, show equivalent immunologic reactivity: a new tool for the diagnosis of fruit allergy. J. Allergy Clin. Immunol. 2003, v. 111, p. 628633.
  60. Pastorello E.A., Vieths S., Pravettoni V. et al. Identification of hazelnut major allergens in sensitive patients with positive doubleblind, placebocontrolled food challenge results. J. Allergy Clin. Immunol. 2002, v. 109, p. 563570.
  61. San MiguelMoncin M., Krail M., Scheurer S. et al. Lettuce anaphylaxis: identification of a lipid transfer protein as the major allergen. Allergy. 2003, v. 58, p. 511517.
  62. Salcedo G., SanchezMonge R., DiazPerales A. et al. Plant nonspecific lipid transfer proteins as food and pollen allergens. Clin. Exp. Allergy. 2004, v. 34, p. 13361341
  63. Asero R., Mistrello G., Roncarolo D. Amato S. A case of allergy to airborne, heatlabile shrimp allergens. J. Allergy Clin. Immunol. 2002, v. 109, p. 371372.
  64. James J.M., Sixbey J.P., Helm R.M. et al. Wheat alpha amylase inhibitor: a second route of allergic sensitization. J. Allergy Clin. Immunol. 1997, v. 99, p. 239244.
  65. Van Loon L.C., Van Strien E.A. The families of pathogenesis related proteins, their activities, and comparative analysis of PR 1 type proteins. Physiol. Mol. Plant Pathol. 1999, v. 55, p. 8597.
  66. Asensio T., Crespo Jesus F., SanchezMonge Rosa et al. Novel plant pathogenesisrelated protein family involved in food allergy. J. Allergy Clin. Immunol. 2004, v. 114, p. 896899.
  67. Palomares O., Villalba M., Quiralte J. et al. 1,3beta glucanases as candidates in latexpollenvegetable food cross reactivity. Clin. Exp. Allergy. 2005, v. 35, p. 345351.
  68. Flamini R., De Rosso M. Expert Mass spectrometry in the analysis of grape and wine proteins. Rev Proteomics. 2006, v. 3, p. 321331.
  69. Krebitz M., Wagner B. et al. Plantbased heterologous expression of Mal d 2, a thaumatinlike protein and allergen of apple (Malus domestica), and its characterization as an antifungal protein. J. Mol. Biol., 2003, v. 13, p. 721730.
  70. MidoroHoriuti T., Goldblum R.M. Variable expression of pathogenesisrelated protein allergen in mountain cedar (Juniperus ashei) pollen. J. Immunol., 2000, v. 15, p. 21882192.
  71. Van Loon L.C., Pierpoint W.S., Boller T. et al. Recommen dations for naming plant pathogenesisrelated proteins. Plant Mol. Biol. Rep. 1994, v. 12, p. 245264.
  72. Yamashita H., Nanba Y., Onishi M. et al. Identification of a wheat allergen, Tri a Bd 36K, as a peroxidase. Biosci. Biotechnol. Biochem. 2002, v. 66, p. 24872490.
  73. Weangsripanaval T., Nomura N., Moriyama T., et al. Identification of suberizationassociated anionic peroxidase as a possible allergenic protein from tomato. Biosci. Biotechnol. Biochem. 2003, v. 67, p. 12991304.
  74. MarkovicHousley Z., Degano M., Lamba D. et al. Crystal structure of a hypoallergenic isoforms of the major birch pollen allergen Bet v 1, and its likely function as a plant steroid carrier. J. Mol. boil. 2003, v. 325, p. 123-133.
  75. Gall H., Kalveram K.J., Forck G. et al. Kiwi fruit allergy: a new birch pollenassociated food allergy. J. Allergy Clin. Immunol. 1994, v. 94, p. 7076.
  76. Mittag D., Vieths S., Vogel L. et al. Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J. Allergy Clin. Immunol. 2004, v. 113, p. 148154.
  77. BallmerWeber B.K., Hoffmann A., Wuthrich B. et al. Influence of food processing on the allergenicity of celery: DBPCFC with celery spice and cooked celery in patients with celery allergy. Allergy. 2002, v. 57, p. 228235.
  78. Van Ree R., van Leeuwen W.A., Akkerdaas J.H. How far can we simplify in vitro diagnostics for Fagales tree pollen allergy? A study with three whole pollen extracts and purified natural and recombinant allergens. Clin. Exp. Allergy. 1999, v. 29, p. 848855.
  79. Laskowski M., Kato I. Protein inhibitors of proteinases. Annu. Rev Biochem. 1980, v. 49, p. 593626.
  80. Burks A.W., Cockrell G. Identification of peanut agglutinin and soybean trypsin inhibitor as minor legume allergens. Int. Arch. Allergy Immunol. 1994,v. 105, p.143149.
  81. Moroz L.A., Yang W.H. Kunitz soybean trypsin inhibitor: a specific allergen in food anaphylaxis. N. Engl. J. Med. 1980, v. 15, p.11261128
  82. Gu X., Beardslee T. Identification of IgEbinding proteins in soy lecithin. Int Arch Allergy Immunol. 2001, Nov.126, p. 218225.
  83. Pastorello E.A., Conti A. Identification of actinidin as the major allergen of kiwi fruit. J. Allergy Clin. Immunol. 1998, Apr 101(4 Pt 1), p 531537. DiezGomez M.L., Quirce S. Asthma caused by Ficus benjamina latex: evidence of crossreactivity with fig fruit and papain. Ann. Allergy Asthma Immunol. 1998, v. 80, p. 2430.
  84. CuestaHerranz J., Pastor C. Identification of Cucumisin (Cuc m 1), a subtilisinlike endopeptidase, as the major allergen of melon fruit. Clin. Exp. Allergy. 2003, v. 33, p. 827833.
  85. Ramachandran S., Christensen H.E. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol. 2000, v. 124, p. 16371647.
  86. Radauer C., Bublin M. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 2008, v. 121, p. 847852.
  87. Hansen K.S., BallmerWeber B.K., Luttkopf D. et al. Roasted hazelnuts-allergenic activity evaluated by doubleblind, placebo controlled food challenge. Allergy. 2003, v. 58, p. 132138.
  88. Asero R., Mistrello G., Roncarolo D. et al. Detection of clinical markers of sensitization to profilin in patients allergic to plantderived foods. J. Allergy Clin. Immunol. 2003, v. 112, 427432.
  89. Van Ree R., van Leeuwen W.A., Akkerdaas J.H. et al. How far can we simplify in vitro diagnostics for Fagales tree pollen allergy? A study with three whole pollen extracts and purified natural and recombinant allergens. Clin. Exp Allergy. 1999, v. 29, p. 848855.
  90. Laine A., Faye L. Significant immunological crossreactivity of plant glycoproteins. Electrophoresis. 1988, v. 9, p. 841844.
  91. Rylander R., Fogelmark B. (1->3)betaDglucan may contribute to pollen sensitivity. Clin. Exp. Immunol. 1999, v. 115, p. 383384.
  92. van Ree R., CabanesMacheteau M., Akkerdaas J. et al. Beta(1,2)xylose and alpha(1,3)fucose residues have a strong contribution in IgE binding to plant glycoallergens J. Biol. Chem. 2000, v.v. 14, 275, p. 1145111458.
  93. Anliker M.D. Allergy caused by ingestion of persimmon (Diospyros kaki): detection of specific IgE and cross reactivity to profilin and carbohydrate determinants. J. Allergy Clin. Immunol. 2001, v.v. 107, 4, p. 718723.
  94. Luttkopf D. Celery allergens in patients with positive double blind placebocontrolled food challenge. J. Allergy Clin. Immunol. 2000, v.v. 106, 2, p. 390399.
  95. Breiteneder H., Mills E.N. Molecular properties of food allergens. J. Allergy Clin. Immunol., 2005, v.v. 115, 1, p. 1423.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright © Pharmarus Print Media, 1970



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies