Bronchial asthma from the perspective of glycomics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Bronchial asthma is a widespread disease that is becoming increasingly costly to the medical and financial systems of many countries with each passing year. The rising prevalence of bronchial asthma necessitates a search for the most efficient diagnostic and treatment strategies for various asthma phenotypes, including some that are relatively uncommon.

From this point of view, glycomics appears to be one of the most interesting and perspective branches of medicine. This research area studies various carbohydrate complexes and their roles in the development of various diseases.

Researchers are interested in the study of the receptors for advanced glycation end products and their soluble variants with regard to bronchial asthma. Furthermore, sialic acid-binding immunoglobulin-type lectins (Siglecs) may play a vital role in the principal novel strategies of the treatment. By affecting Siglecs, a decrease in the proinflammatory activity of immunocompetent cells results, and the bronchial walls are protected. Finally, N- and O-glycans remain almost unresearched. These molecules, on the other hand, have the potential to play a significant role not only in the diagnosis and confirmation of asthma but also in the allergenicity of various molecules. Scientists are interested in N-glycans, not only in the diagnostic context but also in their role as a molecule that can reduce allergenicity, for example, egg white vaccines.

Glycomics and glycoproteomics are cutting-edge disciplines of medical science that are opening up new perspectives in the management of patients with diseases of various organs and systems, including diseases of the respiratory tract in general and bronchial asthma in particular. Despite the fast-paced nature of the development of glycoscience, theories about the role of the molecules investigated in the pathophysiology of respiratory disorders are only beginning to emerge.

Full Text

Restricted Access

About the authors

Ivan D. Shipunov

Samara State Medical University

Author for correspondence.
ORCID iD: 0000-0003-0674-7191
SPIN-code: 9661-9652


Russian Federation, 89, Dm. Chapaevskaya street, Samara, 443099

Vitalii I. Kupaev

Samara State Medical University

ORCID iD: 0000-0003-2639-0003
SPIN-code: 1458-5872

MD, Dr. Sci. (Med.), Professor

Russian Federation, Samara

Alexander V. Zhestkov

Samara State Medical University

ORCID iD: 0000-0002-3960-830X
SPIN-code: 2765-9617

MD, Dr. Sci. (Med.), Professor

Russian Federation, Samara


  1. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800. doi: 10.1016/S0140-6736(17)33311-1
  2. Loftus PA, Wise SK. Epidemiology and economic burden of asthma. Int Forum Allergy Rhinol. 2015;5(Suppl 1):S7–10. doi: 10.1002/alr.21547
  3. Thaysen-Andersen M, Kolarich D, Packer NH. Glycomics & glycoproteomics: from analytics to function. Mol Omics. 2021;17(1): 8–10. doi: 10.1039/d0mo90019b
  4. Buckley ST, Ehrhardt C. The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol. 2010;2010:917108. doi: 10.1155/2010/917108
  5. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267(21):14998–15004.
  6. Brandt EB, Lewkowich IP. RAGE-induced asthma: a role for the receptor for advanced glycation end products in promoting allergic airway disease. J Allergy Clin Immunol. 2019;144(3):651–653. doi: 10.1016/j.jaci.2019.06.012
  7. Shim EJ, Chun E, Lee HS, et al. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clin Exp Allergy. 2012;42(6):958–965. doi: 10.1111/j.1365-2222.2012.03998.x
  8. Lee YG, Hong J, Lee PH, et al. Serum calprotectin is a potential marker in patients with asthma. J Korean Med Sci. 2020;35(43):e362. doi: 10.3346/jkms.2020.35.e362
  9. Qu L, Chen C, Chen Y, et al. High-mobility group box 1 (HMGB1) and autophagy in Acute Lung Injury (ALI): a review. Med Sci Monit. 2019;25:1828–1837. doi: 10.12659/MSM.912867
  10. Imbalzano E, Quartuccio S, Di Salvo EР, et al. Association between HMGB1 and asthma: a literature review. Clin Mol Allergy. 2017;15:12. doi: 10.1186/s12948-017-0068-1
  11. Wang S, Song R, Wang Z, et al. S100A8/A9 in Inflammation. Front Immunol. 2018;9:1298. doi: 10.3389/fimmu.2018.01298
  12. Yang Z, Yan WX, Cai H, et al. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol. 2007;119(1):106–114. doi: 10.1016/j.jaci.2006.08.021
  13. Milutinovic PS, Alcorn JF, Englert JM, et al. The receptor for advanced glycation end products is a central mediator of asthma pathogenesis. Am J Pathol. 2012;181(4):1215–1225. doi: 10.1016/j.ajpath.2012.06.031
  14. Akirav EM, Henegariu O, Preston-Hurlburt P, et al. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma. PLoS One. 2014;9(4):e95678. doi: 10.1371/journal.pone.0095678
  15. Zhang F, Su X, Huang G, et al. sRAGE alleviates neutrophilic asthma by blocking HMGB1/RAGE signalling in airway dendritic cells. Sci Rep. 2017;7(1):14268. doi: 10.1038/s41598-017-14667-4
  16. Patregnani JT, Brooks BA, Chorvinsky E, Pillai DK. High BAL sRAGE is associated with low serum eosinophils and IgE in children with asthma. Children (Basel). 2020;7(9):110. doi: 10.3390/children7090110
  17. Yonchuk JG, Silverman EK, Bowler RP, et al. Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am J Respir Crit Care Med. 2015;192(7):785–792. doi: 10.1164/rccm.201501-0137PP
  18. Kupaev VI, Nurdina MS, Limareva LV. Vitamin D deficiency as a risk factor of uncontrolled asthma. Pulmonologiya. 2017;27(5): 624–628. (In Russ). doi: 10.18093/0869-0189-2017-27-5-624-628
  19. Sukkar MB, Wood LG, Tooze M, et al. Soluble RAGE is deficient in neutrophilic asthma and COPD. Eur Respir J. 2012;39(3):721–729. doi: 10.1183/09031936.00022011
  20. Lyu Y, Zhao H, Ye Y, et al. Decreased soluble RAGE in neutrophilic asthma is correlated with disease severity and RAGE G82S variants. Mol Med Rep. 2018;17(3):4131–4137. doi: 10.3892/mmr.2017.8302
  21. Niu H, Niu W, Yu T, et al. Association of RAGE gene multiple variants with the risk for COPD and asthma in northern Han Chinese. Aging (Albany NY). 2019;11(10):3220–3237. doi: 10.18632/aging.101975
  22. Bordon Y. Inflammation: Live long and prosper with Siglecs. Nat Rev Immunol. 2015;15(5):266–267. doi: 10.1038/nri3851
  23. Balmasova IP, Sepiashvili RI, Sepiashvili YR, Malova ES. Pathogenesis of bronchial asthma and genetic prognosis of its development. J Microbiol Epidemiol Immunobiol. 2014;3:60–67. (In Russ).
  24. Ilmarinen P, Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin Pharmacol Toxicol. 2014;114(1):109–117. doi: 10.1111/bcpt.12163
  25. Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther. 2012;135(3):327–336. doi: 10.1016/j.pharmthera.2012.06.005
  26. Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. J Allergy Clin Immunol. 2013;132(2):437-445. doi: 10.1016/j.jaci.2013.03.024
  27. Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol. 2008;38(1):121–124. doi: 10.1165/rcmb.2007-0154OC
  28. Legrand F, Cao Y, Wechsler JB, et al. Sialic acid-binding immunoglobulin-like lectin (Siglec) 8 in patients with eosinophilic disorders: Receptor expression and targeting using chimeric antibodies. J Allergy Clin Immunol. 2019;143(6):2227–2237.e10. doi: 10.1016/j.jaci.2018.10.066
  29. Farid SS, Mirshafiey A, Razavi A. Siglec-8 and Siglec-F, the new therapeutic targets in asthma. Immunopharmacol Immunotoxicol. 2012;34(5):721–726. doi: 10.3109/08923973.2011.589453
  30. Kiwamoto T, Brummet ME, Wu F, et al. Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol. 2014;133(1):240–247.e1-3. doi: 10.1016/j.jaci.2013.05.018
  31. Suzukawa M, Miller M, Rosenthal P, et al. Sialyltransferase ST3Gal-III regulates Siglec-F ligand formation and eosinophilic lung inflammation in mice. J Immunol. 2013;190(12):5939–5948. doi: 10.4049/jimmunol.1203455
  32. Sajay-Asbaghi M, Sadeghi-Shabestrai M, Monfaredan A, et al. Promoter region single nucleotide polymorphism of siglec-8 gene associates with susceptibility to allergic asthma. Per Med. 2020;17(3):195–201. doi: 10.2217/pme-2018-0080
  33. Gao PS, Shimizu K, Grant AV, et al. Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma. Eur J Hum Genet. 2010;18(6):713–719. doi: 10.1038/ejhg.2009.239
  34. Yokoi H, Choi OH, Hubbard W, et al. Inhibition of Fcepsilon RI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol. 2008;121(2):499–505.e1. doi: 10.1016/j.jaci.2007.10.004
  35. Schanin J, Gebremeskel S, Korver W, et al. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 2021;14(2):366–376. doi: 10.1038/s41385-020-00336-9
  36. Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy. 2018;11:267–281. doi: 10.2147/JAA.S153097
  37. Jones TL, Neville DM, Chauhan AJ. Diagnosis and treatment of severe asthma: a phenotype-based approach. Clin Med (Lond). 2018;18(Suppl 2):s36–s40. doi: 10.7861/clinmedicine.18-2-s36
  38. Chung KF. Diagnosis and management of severe asthma. Semin Respir Crit Care Med. 2018;39(1):91–99. doi: 10.1055/s-0037-1607391
  39. Von Gunten S, Yousefi S, Seitz M, et al. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood. 2005;106(4):1423–1431. doi: 10.1182/blood-2004-10-4112
  40. Chen Z, Bai FF, Han L, et al. Targeting neutrophils in severe asthma via Siglec-9. Int Arch Allergy Immunol. 2018;175(1-2):5–15. doi: 10.1159/000484873
  41. Varki A, Cummings RD, Esko JD, et al. Essentials of Glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015–2017.
  42. Bahaie NS, Kang BN, Frenzel EM, et al. N-Glycans differentially regulate eosinophil and neutrophil recruitment during allergic airway inflammation. J Biol Chem. 2011;286(44):38231–38241. doi: 10.1074/jbc.M111.279554
  43. Zhou X, Kinlough CL, Hughey RP, et al. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight. 2019;4(5):e122475. doi: 10.1172/jci.insight.122475
  44. Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012;18(9):1401–1406. doi: 10.1038/nm.2862
  45. Hwang HS, Kim JY, Park H, et al. Cleavage of the terminal N-acetylglucosamine of egg-white ovalbumin N-glycans significantly reduces IgE production and Th2 cytokine secretion. Biochem Biophys Res Commun. 2014;450(4):1247–1254. doi: 10.1016/j.bbrc.2014.06.101
  46. Park HY, Yoon TJ, Kim HH, et al. Changes in the antigenicity and allergenicity of ovalbumin in chicken egg white by N-acetylglucosaminidase. Food Chem. 2017;217:342–345. doi: 10.1016/j.foodchem.2016.08.112
  47. Malandain H. IgE-reactive carbohydrate epitopes--classification, cross-reactivity, and clinical impact. Eur Ann Allergy Clin Immunol. 2005;37(4):122–128.
  48. Malandain H, Giroux F, Cano Y. The influence of carbohydrate structures present in common allergen sources on specific IgE results. Eur Ann Allergy Clin Immunol. 2007;39(7):216–220.
  49. Hykollari A, Malzl D, Stanton R, et al. Tissue-specific glycosylation in the honeybee: Analysis of the N-glycomes of Apis mellifera larvae and venom. Biochim Biophys Acta Gen Subj. 2019;1863(11):129409. doi: 10.1016/j.bbagen.2019.08.002
  50. Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014;2(6):645–648; quiz 649. doi: 10.1016/j.jaip.2014.09.004
  51. Peter-Katalinić J. Methods in enzymology: O-glycosylation of proteins. Methods Enzymol. 2005;405:139–171. doi: 10.1016/S0076-6879(05)05007-X
  52. Wilkinson H, Saldova R. Current methods for the characterization of O-Glycans. J Proteome Res. 2020;19(10):3890–3905. doi: 10.1021/acs.jproteome.0c00435

Supplementary files

There are no supplementary files to display.

Copyright © Pharmarus Print Media, 2022

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies