года значительно уменьшилось (с 6,3 до 3,8) (р III до–III после<0,01; t-критерий Стьюдента для связанных выборок). Во II группе детей на фоне антибактериальной и иммуномодулирующей терапии так же отмечено снижение числа ОРИ (с 6,1 до 4,9), однако в меньшей степени чем в III группе (р II до – II после<0,05). В I группе, через 12 месяцев после начала терапии, отмечается статистически недостоверное увеличение частоты заболевания (с 6,3 до 7,2) (р I до –II после>0,05).

Выводы. Для подтверждения хламидийной или микоплазменной инфекций достаточно одного положительного метода (ИФА, ПЦР) в совокупности с клинической картиной. В целях снижения риска персистирования хламидийной и микоплазменной инфекций; утяжеления течения и формирования БА необходимо адекватное сочетание пролонгированного курса азитромицина в дозе 10 мг/кг 1 раз в сутки 7 дней, затем 10 мг/кг 1 раз в сутки на 14, 21, 28 дни с индукторами синтеза интерферона (циклоферон с 4 летнего возраста, бронхо-мунал – с 2-4 лет) в возрастных дозировках и комплекса восстановительного лечения.

ЛИТЕРАТУРА:

- 1. Ахапкина, И. Г. Распространение микоплазменной инфекции у больных с атопией / И. Г. Ахапкина // Инфекционные болезни. 2006. Т. 4, № 3. С. 39-41.
 - 2. Лобзин, Ю. В. Хламидийная инфекция: руко-

водство для врачей / Ю. В. Лобзин, Ю. И. Ляшенко, А. Л. Позняк. – СПб. : Фолиант, 2003. – 400 с.

- 3. Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика» / Рос. респират. о-во, Педиатр. респират. о-во; [науч. ред.: проф. Волков И. К. и др.]. [4-е изд., испр. и доп.]. М.: Оригинал-макет, 2012. 182 с.
- 4. Практическая пульмонология детского возраста: справочник / В. К. Таточенко, С. В. Рачинский, И. К. Волков [и др.]; под ред. В. К. Таточенко. 2-е изд. М.: [б. и.], 2001. 268 с.
- 5. Савенкова, М. С. Хламидиоз у детей: современные аспекты лечения / М. С. Савенкова, А. А. Афанасьева // Эффективная фармакотерапия. Эпидемиология и инфекции. 2012. № 1. С. 19-30.
 6. Суханова Н. А. Клиническое значение влия-
- 6. Суханова Н. А. Клиническое значение влияния латентной инфекции верхних дыхательных путей на течение бронхиальной астмы у детей // Суханова Н. А. Цветков Э. А. Новик Г. А. / Педиатрическая фармакология. 2012. Т.9, N6. С. 54 60.
- 7. Chlamydia pneumoniae and chronic bronchitis: association with severity and bacterial clearance following treatment / F. Blasi, S. Damato, R. Cosentini [et al.] // Thorax. 2002. Vol. 57. P. 672-676.
- 8. Chlamydia pneumoniae and newly diagnosed asthma: a case-control study in 1 to 6-year-old children / M. Korppi, M. Paldanius, A. Hyvarinen [et al.] // Respirology. 2004. Vol. 9, № 2. P. 255-259.
- 9. Importance of acute Mycoplasma pneumoniae and Chlamydia pneumoniae infections in children with wheezing / S. Esposito, F. Blasi, C. Arosio [et al.] // Eur. Respir. 2000. Vol. 16, № 6. P. 1142-1146.

 10. Patel, K.K. Evidence of an infectious asthma
- 10. Patel, K.K. Evidence of an infectious asthma phenotype: chlamydia driven allergy and airway hyperresponsiveness in pediatric asthma: a dissertation..... doctor of philosophy / Katir Kirit Patel. Massachusetts, 2013. 172 p.

Исследование сенсибилизации к антигенам различных сортов яблока у детей

Прилуцкий А.С., Ткаченко К.Е.

Кафедра клинической иммунологии, аллергологии и эндокринологии, Донецкий национальный медицинский университет им. М. Горького, г. Донецк

INVESTIGATION OF DIFFERENT APPLE CULTIVARS SENSITIZATION IN CHILDREN

Prylutskyi O., Tkachenko K.

Department of Clinical Immunology, Allorgology and Endocrinology, M. Gorky Donetsk National Medical University, Donetsk

В настоящее время в мире отмечается тенденция к увеличению частоты аллергических заболеваний. В среднем, до 30% населения планеты страдает различными формами аллер-

гической патологии. По данным последних публикаций, аллергия к фруктам встречается у 6,6% взрослых и 11,5% детей в возрасте до 6-ти лет, среди которых у 8,5% регистрируется аллер-

гия к яблоку [1]. Также имеются документальные сведенья подтверждающие, что аллергии к яблоку подвержено до 2% населения Европы [2]. Кроме того, исследования European Community Respiratory Health Survey также показали, что в профилях сенсибилизации 4522-х молодых людей, проживающих в 13-ти различных странах Европы, яблоко являлось одним из наиболее частых продуктов – причин пищевой аллергии. Частота сенсибилизации к пищевым продуктам в данном исследовании колебалась в пределах 7,2-2,8% [3].

Следует отметить, что работы, изучающие сенсибилизацию к различным сортам яблок в мире единичны. Исследований сенсибилизации к сортам яблок, которые произрастают в ДНР, России, Украине, Белоруссии и других странах бывшего СССР вообще не проводилось.

Цель исследования. Целью настоящей работы явилось изучение концентраций специфических иммуноглобулинов Е и частоты сенсибилизации к различным сортам яблока у детей, имеющих проявления пищевой аллергии на момент осмотра или в анамнезе.

Материалы и методы. Нами исследованы сыворотки крови 163 детей в возрасте от 5-ми месяцев до 17-ти лет. Пациенты предъявляли жалобы на частое развитие различных пищевых аллергических реакций, преимущественно атопического дерматита и крапивницы. У всех обследованных проводилось определение уровней специфических IgE-антител (sIgE) к различным сортам яблока (Антоновка, Симиренко, Снежный кальвиль, Голден, Айдаред, Джонатан, Чемпион, Лиголь). Лабораторное тестирование выполнялось с помощью тест-систем для иммуноферментного анализа отечественного производства (г. Донецк) с аналитической чувствительностью 0,05 - 0,075 МЕ/мл. Статистический анализ полученных данных проводился с помощью лицензионной программы «MedStat». Выполнена оценка характера распределений показателей на нормальность, и, учитывая отличие их от нормального, были рассчитаны следующие показатели: медиана, ошибка медианы (M±m); 95% доверительный интервал (ДИ). Также был проведён ранговый однофакторный анализ Крускала-Уоллиса, направленный на выявление различий в уровнях sIgE к различным сортам яблока. Также выполнены множественные сравнения частот сенсибилизации к антигенам различных сортов яблока с использованием критерия х-квадрат, процедуры Мараскулио-Ляха-Гурьянова. Пограничные значения sIgE для сенсибилизированных лиц, принимались в соответствии с показателями здоровых детей аналогичного возраста.

Результаты исследования. В ходе проведённого исследования нами было установлено, что средние значения показателей sIgE-антител для различных сортов яблока у обследованных пациентов были следующими:

- Антоновка $0,12\pm0,01$ МЕ/мл (0,11;0,13);
- Симиренко 0,12±0,02 МЕ/мл (0,11; 0,13);
- Снежный кальвиль 0,12±0,01 МЕ/мл (0,11; 0,13);
 - Голден 0,15±0,01 МЕ/мл (0,14; 0,16);
 - Айдаред 0,19±0,02 МЕ/мл (0,18; 0,20);
 - Джонатан $0,18\pm0,02$ МЕ/мл (0,17;0,19);
 - Чемпион 0,19±0,02 МЕ/мл (0,18; 0,20);
 - Лиголь 0,19±0,03 МЕ/мл (0,18; 0,20).

Ранговый однофакторный анализ Крускала-Уоллиса показал наличие достоверных отличий в 8-ми исследуемых группах (р<0,001). Кроме того, критерием Данна были выявлены статистически значимые различия уровней sIgE к антигенам яблок сортов Антоновка, Симиренко, Снежный кальвиль и яблок сортов Айдаред, Джонатан, Чемпион, Лиголь, а также Голден (p<0,01). Интересно отметить, что уровни sIgE к яблоку сорта Голден также достоверно отличались от уровней sIgE к яблокам сортов Айдаред, Джонатан, Чемпион и Лиголь (p<0,01). Вместе с тем статистически значимой разницы в уровнях sIgE между сортами Антоновка, Симиренко и Снежный кальвиль выявлено не было (р>0,05). Аналогично не выявилось различий средних значений sIgE и среди яблок сортов Айдаред, Джонатан, Чемпион и Лиголь (р>0,05).

Проведённый анализ частоты сенсибилизации к антигенам яблока выявил существенные колебания частоты сенсибилизации к различным сортам яблока, которая составила:

- Антоновка 12,9±2,6%;
- Симиренко 17,2±2,9%;
- Снежный кальвиль 8,6±2,2%;
- Голден 20,9±3,2%;

- Айдаред 25,1±3,4%;
- Джонатан 22,7±3,3%;
- Чемпион 25,8±3,4%;
- Лиголь 24,5±3,4%.

Множественные сравнения частот сенсибилизации в 8-ми группах с использованием критерия χ^2 (двусторонней критической области) показали наличие статистически значимого различия на уровне значимости р<0,001. Проведение процедуры Мараскулио-Ляха-Гурьянова позволило выявить, что частота сенсибилизации к антигенам яблока Снежный кальвиль достоверно ниже, чем к антигенам яблок сортов Чемпион, Лиголь и Айдаред (p=0,020, p=0,041 и p=0,029 соответственно).

Вышеуказанные различия в уровнях выработки sIgE и частот сенсибилизации между «зелёными» и «красными» сортами, вероятнее всего, обусловлены генетически детерминированными различиями их антигенного состава, сопряжёнными с рядом сопутствующих филогенетических признаков. Общеизвестно, что окраска плода обуславливается наличием особых пигментов – флавоноидов, а для плодов красного цвета - наличием конкретного класса флавоноидов антоцианов. По своей химической структуре данные соединения являются фенолами, т.е. полициклическими углеводородами, и, соответственно, сами по себе не несут какого-либо аллергизирующего потенциала. Однако рядом авторов на примере клубники было убедительно продемонстрировано, что экспрессия аллергенов - гомологов Bet v 1 (в яблоке - Mal d 1), непосредственно связана с биосинтезом флавоноидов, и что данный аллерген играет существенную роль в пигментообразовании [4].

Выводы:

1. Установлено, что уровни специфических иммуноглобулинов Е среди детей с отягощённым

аллергическим анамнезом достоверно выше для сортов Айдаред, Джонатан, Чемпион и Лиголь (p<0,01) по сравнению с яблоками сортов Антоновка, Симиренко, Снежный кальвиль и Голден. Также установлено, что уровни специфических иммуноглобулинов Е к яблоку сорта Голден достоверно выше (p<0,01) в сравнении с яблоками сортов Антоновка, Симиренко и Снежный кальвиль.

- 2. Анализ частоты сенсибилизации к антигенам яблока выявил статистически значимые различия вышеуказанного показателя (p<0,001) среди 8-ми исследуемых сортов яблока. Установлено, что частота сенсибилизации к антигенам яблока Снежный кальвиль достоверно ниже, чем к антигенам яблок сортов Чемпион, Лиголь и Айдаред (p=0,020, p=0,041 и p=0,029 соответственно).
- 3. Полученные результаты свидетельствуют о целесообразности определения специфической сенсибилизации к различным сортам яблока у детей, имеющих отягощённый аллергологический анамнез, при подборе индивидуальной диеты, и могут использоваться и в практическом здравоохранении, и в научных целях.

ЛИТЕРАТУРА:

- 1. Kiewning D., Schmitz-Eiberger M. Effects of long-term storage on Mal d 1 contents of four apple cultivars with initial low Mal d 1 contents. J Sci Food Agric. 2014; 94:798-802.
- 2. Bokszczanin K.Ł., Przybyła A.A. Molecular aspects of allergy to plant products. Part II. Pathogenesis-related proteins (PRs), apple allergenicity governed by Mal d 1 gene. Pol Merkur Lekarski. 2012; 32:176-181.
- 3. Sicherer S.H. Epidemiology of food allergy. Journal of Allergy and Clinical Immunology. 2011; 127:594-602.
- 4. Munoza C., Hoffmann T., Escobara N.M., et al. The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant. 2010; 3(1):113–124.