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Abstract
BACKGROUND: Epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNAs have more re-
cently been highlighted as important regulatory elements of gene expression in allergic diseases. Such mechanisms mediate 
interactions between predisposing genetic determinants and environmental exposures, with subsequent influences on immune 
response as well as on susceptibility to conditions such as asthma, allergic rhinitis, atopic dermatitis, and food allergies.
MATERIALS AND METHODS: This systematic review integrated evidence from studies exploring the role of epigenetic modifica-
tions in allergic diseases. The databases were searched systematically and relevant studies as per predefined PECOS criteria 
were included. All data regarding epigenetic mechanisms, the target loci involved, environmental influences, and allergic out-
comes were extracted and analyzed. The studies were evaluated for risk of bias using the RoB 2.0 and ROBINS-I tools, and the 
certainty of evidence was appraised using the GRADE framework.
RESULTS: It was observed that DNA methylation at such loci, including FOXP3 and IL-4Rα, was invariably associated with im-
mune dysregulation in allergic diseases across the 11 studies included. Exposure to pollutants and microbial exposure has 
shown associations with alterations in epigenetic profiles that have resulted in significant impacts on immune tolerance and 
allergic inflammation. Quantitative results: in specific immunotherapy settings, 95 % suppression of effector T-cell proliferation 
(p <0.0001), and identification of 956 CpG sites associated with the risk of allergic rhinitis Fixed drug reaction (FDR) <5 %. The 
studies together showed that epigenetic modifications are central to the pathogenesis of allergic diseases and may be used as 
biomarkers and therapeutic targets.
CONCLUSION: This review highlighted how epigenetics played a crucial role in the development and regulation of allergic dise-
ases and underlined the interactions between these entities and environmental exposures. Findings indicated that epigenetic 
mechanisms promise a wide potential in precision medicine, mainly concerning biomarker discovery and treatment stratification. 
However, study methodology heterogeneity and variability of results should be pursued further for homogenization of method-
ologies and thus increasing the applicability in clinics.
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Background
Epigenetics refers to the study of heritable modifications 

in gene expression without alterations to the underlying DNA 
sequence. This has emerged as a critical area of research 
regarding how genetic and environmental factors converge to 
regulate cellular functions and disease states. These have been 
shown to dynamically influence chromatin architecture and gene 
transcription through mechanisms including DNA methylation, 
histone modifications, and non-coding RNA activity, which 
provides a rather versatile framework for gene-environment 
interactions. Epigenetic changes are not fixed genetic mutations 
and thus are reversible. They therefore become key targets in 
understanding mechanisms of disease and the development of 
novel therapeutic approaches (Fig. 1) [1–3].

Allergic diseases include allergic rhinitis, asthma, atopic 
dermatitis, and food allergies. It represents a significant 
and growing health burden across all ages of millions of 
individuals worldwide [4, 5]. These diseases have rapidly 
increased in prevalence over the past few decades, especially 
in the urbanized and industrialized area. It is hypothesized 
that environmental factors such as pollution, dietary changes, 
microbial exposure, and sedentary lifestyle exacerbate allergic 
responses [6]. The sharp rise in disease over the previous 
decades, therefore, cannot be explained by predisposition 
alone, bringing into particular relevance epigenetic mechanisms 
as mediators of the impacts of environmental exposures on 
immunity and susceptibility to disease [7].

Dysregulated immune responses are central in allergic 
diseases (Fig. 2). Here, these relate to T helper (Th) and 
regulatory T cells (Treg) interactions with B cells. There 

are skewed Th2-mediated responses, that involve the 
overexpression of interleukins (IL) such as IL-4, IL-5, and IL-13, 
hence orchestrating the allergic inflammatory cascades [8]. 
These processes significantly appear to be modulated through 
epigenetic alterations. For instance, the DNA methylation 
patterns of the promoter regions of Th2 cytokine genes are 
associated with higher Th2 responses, whereas TSDRs in the 
FOXP3 gene are associated with Treg function and immune 
tolerance [9]. Histone acetylation and methylation further 
modulate chromatin accessibility and thus the expression of 
genes involved in allergic inflammation and resolution [10]. 
Non-coding RNAs, especially microRNAs, have more recently 
emerged as important regulators targeting messenger RNAs 
to fine-tune immune cell signaling and cytokine production in 
allergic diseases [11].

Environmental exposures are powerful epigenetic 
modulators of allergic diseases (Fig. 3). Inhaled pollutants such 
as diesel exhaust particles can lead to the hypermethylation 
or hypomethylation of immune-related genes, changing 
immune cell function and aggravating the disease [12]. 
Furthermore, diet and, importantly, gut microbiota profiles 
during early development significantly impact the epigenetic 
programming of either immune tolerance or susceptibility to 
allergens. Hence, this evidence emphasizes the part of the life 
exposome cumulative lifetime environmental exposure that 
drives these epigenetic changes predisposing people to allergy 
diseases [13, 14].

Much progress has been made so far, but significant 
translation to clinical practice has yet to be achieved. There 
is still much heterogeneity of allergic diseases, differences in 
the methodologies applied, and variability in environmental 

Fig. 1. Overview of epigenetics and allergic diseases.
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Fig. 2. Role of epigenetics in allergic diseases.

Fig. 3. Environmental modulation of epigenetics.
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exposures to identify a consistent epigenetic biomarker. Moreover, 
understanding functional consequences requires integrated 
approaches that consider molecular, environmental, and clinical 
data. Efforts have been eased by recent developments in high-
throughput sequencing and bioinformatics to identify disease 
state and treatment response epigenetic signatures. Against 
this backdrop, this systematic review and meta-analysis aims to 
synthesize current evidence on the role of epigenetic mechanisms 
in the development and regulation of allergic diseases.

Materials and methods

Review design
The PECOS (Population, Exposure, Comparison, Outcomes, 

Study design) protocol of this systematic review followed the 
reporting guidelines of PRISMA to allow it to be made trans-
parent and reproducible (Table 1) [15]. The population included 
individuals diagnosed with allergic diseases, including asthma, 
allergic rhinitis, atopic dermatitis, and food allergies. The expo-
sure involved epigenetic modifications, such as DNA methyla-
tion, histone modifications, and non-coding RNAs. The compar-
ator comprised individuals without allergic conditions or with 
normal epigenetic profiles. The outcomes focused on the as-
sociation of epigenetic alterations with immune dysregulation, 
disease severity, and therapeutic responses. The study design 
included observational, cohort, case-control, and clinical studi-
es that assessed the role of epigenetics in allergic diseases.

Database search protocol
To ensure an all-inclusive capture of literature, a data-

base search strategy was conceptualized. It was performed in 
seven databases: PubMed, Embase, Scopus, Web of Science, 
Cochrane Library, CINAHL, and PsycINFO. Boolean operators 
and MeSH keywords maximized the precision of the search. 
It included combinations such as:
• (“Epigenetics” OR “DNA methylation” OR “Histone 

modification” OR “non-coding RNA”) AND (“Allergic 
diseases” OR “Asthma” OR “Rhinitis” OR “Atopic dermatitis” 
OR “Food allergy”);

• (“Immune regulation” OR “T-helper cells” OR “Regulatory 
T cells” OR “Inflammation”) AND (“Allergy pathogenesis” OR 
“Environmental exposures”);

• (“Epigenetic biomarkers” AND “Allergic inflammation”).

Data extraction protocol and data items
Application of data extraction was conducted by using 

a form of pre-designed data-extraction. Data extraction used 
two independent reviewers to limit error and bias. Included are 
study characteristics such as: author; year; location; study de-
sign; samples of size; demographics; epigenetic mechanisms 
involved; genes or loci of interest; the implicated biological 
pathways; the method applied for the analysis of epigenetics; 
major findings; the statistical outputs that included odd ratios 
or beta coefficients; environmental exposures examined. Third 
reviewers compared and resolved inconsistencies from cross 
checking in consensus.

Table 1. Inclusion and exclusion criteria devised for this review

Criteria Inclusion Exclusion

Population Studies involving individuals with confirmed allergic 
diseases, such as asthma, rhinitis, dermatitis, or food 

allergies

Studies involving non-allergic conditions, autoimmune 
diseases, or non-human populations

Exposure Studies reporting epigenetic mechanisms, including 
DNA methylation, histone modifications, and non-

coding RNAs

Studies without explicit evaluation of epigenetic 
modifications

Comparator Studies with controls including healthy individuals or 
those with normal epigenetic profiles

Studies without appropriate comparators or unclear 
control group characteristics

Outcomes Studies evaluating immune dysregulation, disease 
severity, therapeutic response, or biomarker potential

Studies without measurable outcomes related to 
epigenetics and allergic disease

Study design Observational studies, cohort studies, case-control 
studies, and clinical trials

Reviews, editorials, letters, commentaries, animal 
studies, or in vitro studies without human data

Publication language Articles published in English Articles published in languages other than English

Publication year Studies published from 2000 onwards to ensure 
relevance to current epigenetic methodologies

Studies published prior to 2000
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Bias assessment protocol
Bias was determined by ROBINS-I for non-randomized 

studies, while Cochrane’s RoB 2.0 was used to determine bias 
in randomized studies [16, 17]. ROBINS-I evaluates biases 
across confounding, participant selection, classification of in-
terventions, and outcome measurement domains. Cochrane’s 
RoB 2.0 assessed randomized studies by considerations in the 
randomization process, deviations from intended interventions, 
missing data, outcome measurement, and reporting bias. For 
every included study, a risk of bias was rated as low, moder-
ate, or high, and all discrepancies between the reviewers were 
solved by consensus.

Results
The database search retrieved an initial number of 

407 records, which were from seven databases: CINAHL 
(n = 44), PubMed (n = 51), Cochrane Library (n = 63), Embase 
(n = 68), Web of Science (n = 60), PsycINFO (n = 70), and Scopus 
(n = 51). After excluding 38 duplicate records, 369 unique 
records were screened. No records were excluded during this 
round. Then, an order was placed for 369 reports to retrieve 
those. Out of them, 21 reports could not be retrieved. After 
retrieval, 348 reports were screened for eligibility. Among the 
reports, 337 were excluded because they consisted of literature 
reviews (n = 49), in vitro studies (n = 62), cross-sectional 

Fig. 4. Study selection process for this review.
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studies (n = 56), editorials (n = 63), theses articles (n = 59), and 
studies violating PECOS protocol (n = 48). Finally, 11 studies 
were included in the review (Fig. 4) [18–28].

Demographic characteristics
It incorporates geographically varied research locations and 

studies within them (Table 2). Most of the works were carried 
out in locations in California, USA; Australia; Copenhagen, 
Denmark; Naples, Italy; and China [18, 19, 21, 22, 28]. By 
doing so, it reflects wider geographical spread in the review 
studies. Moreover, the varied types of designs which featured 
in these reviewed studies ensured strength in methodology. 
This consisted of observational cohort studies, genome-wide 
studies, randomized controlled trials, prospective birth cohort 
studies, as well as the single-site work [18–21, 26]. Sample sizes 
varied between smaller cohorts, 16 participants in controlled 
trials and larger cohorts, up to 700 participants, in birth cohort 

studies [21, 23]. The average age of participants was neonates 
and infants and adults [19, 22, 23, 28], and is an indicator of 
the effects that epigenetic mechanisms may play at various 
ages. Some research studies included an equal gender split, 
as in infant and children studies, but some comprised mostly 
males, like in the case of patients with peanut allergy [21, 27]. 
Lengths of follow-up ranged from six hours after exposure 
to six years of longitudinal follow-up, thus incorporating both 
acute and chronic epigenetic modifications related to allergic 
diseases [21, 23].

Epigenetic mechanisms and target genes
The included studies focused on DNA methylation as the 

core epigenetic mechanism and highlighted the central role in 
controlling immune responses in allergic diseases (Table 3). 
Key loci included FOXP3, HLA-DQB1, and IL-4Rα [18, 19, 22, 
25, 28]. The methylation and demethylation patterns of these 

Table 2. Demographic characteristics observed across the included studies

Author ID Year Location Study design Sample 
size

Mean age Male female 
ratio

Follow-up 
period

K.M. Hew et al. [18] 2015 California, 
USA

Observational 
cohort study

256 Children (10–21 
years)

171:85 Up to 1 year

D.J. Martino et al. 
[19]

2013 Australia Genome-wide 
study

60 Neonatal to 12 
months

Not reported Not reported

R.L. Miller et al. 
[20]

2017 USA Randomized 
control trial

200 5.2–17.5 years Not reported 12 months

A. Morin et al. [21] 2020 Copenhagen, 
Denmark

Prospective birth 
cohort study

700 Infants and Children 
(up to 6 years)

236:232 6 years

L. Paparo et al. [22] 2016 Naples, Italy Clinical 
observational 

study

40 3–18 months Not reported 4 weeks

N. Rabinovitch et 
al. [23]

2021 USA Randomized 
controlled study

16 Adults with Asthma Not reported 6 hours 
post-

exposure

B.J. Schmiedel et 
al. [24]

2018 La Jolla, USA Database study 91 Adult Balanced Longitudinal

R.S. Swamy et al. 
[25]

2012 Stanford, 
USA

Phase I randomi-
zed controlled trial

30 5–40 years Not reported 12 months

A. Syed et al. [26] 2014 Stanford, 
USA

Phase I single-site 
study

43 Peanut-allergic 
patients

Not reported 27 months

L.L. Tan et al. [27] 2025 Singapore Retrospective 
study

41 20 months 73.2 % male 35 months 
(median)

Y. Zhao et al. [28] 2024 China Phase IIb 
randomized 

controlled trial

120 18–70 years Not reported 24 weeks
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loci influenced immune regulatory pathways; FOXP3 was the 
center of Treg function and immune tolerance [18, 22, 25]. 
For example, TSDR demethylation at FOXP3 was associated 
with enhanced Treg function and tolerance in immunoglobulin 
(Ig) E-mediated allergies [22]. Hypomethylation at FOXP3 CpG 
sites was also associated with clinical tolerance in peanut 
allergies [26].

Besides FOXP3, several other loci, such as HLA-DQB1, 
were also involved in T-cell differentiation with 85 statistically 
differentially methylated loci identified in food allergy contexts 
[19]. Another locus, IL-4Rα, was also of prime importance for 
Th2-mediated responses, elucidating the role of the cytokine 
pathway in atopic dermatitis [28]. Finally, 956 CpG sites have 
been associated with allergic rhinitis risk, indicating the 
impact of microbes on epigenetic programming during early 
life [21].

Biological pathways  
and allergy subtypes
Epigenetic alterations were highly correlated with biological 

pathways that regulate immune responses. Treg dysfunction 
and Th2 cytokine dysregulation was identified to be the 
dominant mechanisms in asthma and allergic rhinitis [18, 28]. 
For example, CysLTR1 and GPR17 gene methylation aberrantly 
altered cysteinyl leukotriene pathways in asthma patients to 
the high levels of expression [23]. Histone acetylation and 
noncoding RNA activities were associated with modulation 
of chromatin accessibility that further modulated allergic 
inflammation [19, 26].

Allergy subtypes investigated included asthma, 
allergic rhinitis, atopic dermatitis, and IgE-mediated 
disorders like peanut allergy and cow’s milk allergy (CMA) 
[18, 21–23, 26, 28]. For instance, in the scenario of peanut 
oral immunotherapy, there was the enhancement of Treg 
function and a reduction of Teff proliferation, correlating 
with FOXP3 hypomethylation [26]. Dietary interventions 
caused IgE mediated CMA to induce TSDR demethylation, 
which promoted immune tolerance [22].

Methodologies and key findings
The other methods with higher resolution are the sodium 

bisulfite conversion of pyrosequencing, genome-wide meth-
ylation profiling, and Illumina 850k EPIC arrays [18, 19, 21, 23].  
Using these methods, authors identified locus-specific epigene-
tic alterations linked to allergic phenotypes, with some of the 
observations mentioned below:
• chronic polycyclic aromatic hydrocarbons exposure was 

associated with methylation of FOXP3 and resulted in 
impaired Treg cell function in asthmatics;

• epigenetic modifications in CysLTR1 and GPR17 were 
inversely correlated with lung function measures, such as 
FEV1, in asthma [23];

• epigenetic demethylation of FOXP3 CpG sites decreased Teff 
proliferation by 95 % in peanut allergies, which is a crucial 
therapeutic scope of epigenetic modulation [26];

• in genome-wide analysis, 956 CpG sites showed significant 
correlation with allergic rhinitis, and it emphasizes 
the significance of microbial diversity in immune 
regulation [21].

Environmental exposures  
and epigenetic modulation
Determinative factors for the epigenetic alteration are 

linked to environmental exposure. The polluting agents 
including diesel exhaust emitted hypermethylation of immune-
associated genes and increased the severity of asthma [23]. 
Early-life microbiota exposure in humans has influenced 
epigenetic changes that strengthen immune tolerance or allergic 
susceptibility, respectively [21]. Interventions with diets during 
infancy altered profoundly epigenetic signatures, including the 
demethylation of TSDR in FOXP3, facilitating immune tolerance 
within IgE-associated CMA [22]. Thus, these findings reinforced 
the concept of the exposome as a cumulative environmental 
exposures interacting with the epigenome to shape immune 
responses and disease outcomes.

Assessment of bias
For studies evaluated using the RoB 2.0 tool, R.L. Miller 

et al. had high overall bias because of important concerns in 
several domains, including domain 3 (high bias) and domain 5 
(some concerns) (Fig. 5) [20]. R.S. Swamy et al. also had high 
bias across most domains, indicating important methodological 
concerns [25]. In contrast, N. Rabinovitch et al. and Y. Zhao 
et al. showed less bias as a whole but had low bias in several 
domains with some concerns in specific areas, such as 
domain 5 [23, 28]. A. Syed et al. had a low overall risk of bias 
despite having some concerns in domains 2 and 4 [26].

A. Morin et al. and L. Paparo et al. had very low overall 
bias as appraised by ROBINS-I, with few concerns across the 
majority of domains, indicating robust methodologies (Fig. 6) 
[21, 22]. However, D.J. Martino et al. and L.L. Tan et al. were 
also found to be of moderate bias overall since domains 2, 6, 
and 7 possessed moderate concerns [19, 27]. K.M. Hew 
et al. were also moderate overall due to a general concern 
that the domains presented as moderate for domains 1 and 
domain 7 [18]. B.J. Schmiedel et al. had overall moderate 
bias while the issues occurred in the following domains 2, 3, 
and 4 [24].



Fig. 5. Bias assessment using the RoB 2.0 tool.
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Discussion
As a collective, the studies demonstrated an important 

role of epigenetic mechanisms in the modulation of immune 
responses and their associations with allergic diseases and 
varying degrees of similarity and dissimilarity among the 
findings (Fig. 7). Studies by K.M. Hew et al. and N. Rabinovitch 
et al. have explored the impact of environmental pollutants 
on DNA methylation and immune dysfunction in humans, 
where K.M. Hew et al. examined methylation of FOXP3 
associated with chronic polycyclic aromatic hydrocarbons 
exposure, and N. Rabinovitch et al. investigated diesel 
exhaust (DE) exposure linked to altered methylation of 
CysLTR1 in asthma [18, 23]. These studies were consistent 
in linking environmental exposures to epigenetic alterations 
but differed in the specific pathways and allergens studied. 
D.J. Martino et al. and A. Morin et al. showed agreement 
in studying the epigenetic modifications of immune cells, 
although D.J. Martino et al. discovered 85 loci associated 
with food allergies, whereas A. Morin et al. connected 
microbial diversity to the epigenetic changes occurring in 
allergic rhinitis [19, 21]. Both studies have highlighted the 
role of environmental and microbial effects on epigenetic 
immuneregulation with the involvement of T-cell modulation; 
however, the former study considered allergic conditions 
different from those described by the latter one.

L. Paparo et al. and A. Syed et al. shared the common theme 
of demethylation of FOXP3, which is involved in the induction 
of immune tolerance in IgE-mediated CMA and peanut oral 
immunotherapy, respectively [22, 26]. The studies differed in 
their therapeutic context but tended to have consistent findings 
regarding the importance of FOXP3 for Treg-mediated immune 
regulation. R.S. Swamy et al. extended this in further proving 
a critical role of FOXP3 demethylation in the process of immune 
modulation; hence, they proved an SLIT-enhanced tolerance 
through alteration of FOXP3 [25]. L. Paparo et al. and A. Syed et al.  
revealed similar results, but only with regard to respiratory 
allergies [22, 26]. Therefore, R.S. Swamy et al. expanded its 
application to more comprehensive use via FOXP3-mediated 
epigenetic mechanisms [25].

B.J. Schmiedel et al. differed from others in using cis-eQTL 
analysis to identify cell-specific epigenetic expression profiles, 
rather than focusing on methylation or demethylation only [24]. 
This enabled a more extensive transcriptomic view of immune 
regulation, differing by methodology but concordant with the 
other studies in emphasizing the role of epigenetics in allergic 
diseases. L.L. Tan et al. was the only study that focused on 
coconut allergies, showing persistence and limited tolerance, 
which was different from the rest of the studies that highlighted 
therapeutic modulation [27]. Y. Zhao et al. discussed the use 
of CM310 in atopic dermatitis, where Th2 cytokine pathway 

Fig. 7. Flowchart representing the overall findings of this review.
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regulation was linked to clinical improvement [28]. Though the 
therapeutic focus was different, it was similar to D.J. Martino 
et al. and A. Morin et al. as it was related to epigenetic changes 
and allergic conditions [19, 21].

Clinical manifestations vary even among diseases within 
the same organ system, because different phenotypes 
with distinct underlying pathophysiological and molecular 
endotypes occur. The examination of inflammatory profiles of 
these diseases aims to be used in guiding the implementation 
of personalized therapeutic approaches. The discovery of 
epigenetic marks, potentially related to allergic disease 
phenotypes and endotypes, may lead to improved allergic 
disease management, with a further understanding of the 
induction of tolerance following immunotherapy and potentially 
forecasting the outcome of the treatment when conducted early 
during intervention [1, 29–31].

These include both stable and dynamic epigenetic 
modifications such as DNA methylation, histone changes, and 
expression of non-coding RNAs that are thought to underlie 
the relationship between environmental triggers and asthma 
incidence and course of disease and determination of its 
phenotypic characterization [11]. Pharmacological intervention 
thus might impinge on pathogenesis of asthma primarily at 
an epigenetic level of regulation. For example, the inhaled 
corticosteroids, commonly used for decades to manage 
inflammation in both acute and chronic forms of asthma 
and chronic obstructive pulmonary disease, are believed to 
act partially through epigenetic pathways, such as histone 
acetylation and microRNA modulation [32, 33].

Corticosteroids work by binding to intracellular 
glucocorticoid receptors, which then activate glucocorticoid 
response elements located in the promoter regions of 
glucocorticoid-responsive genes. These drugs increase histone 
acetylation at anti-inflammatory gene sites, such as mitogen-
activated protein kinase phosphatase-1, MKP-1, while also 
attracting histone deacetylases, HDAC2, to deacetylate and 
suppress pro-inflammatory genes, such as IL-8, NF-κB, and 
activator protein-1, AP-1. A new study published recently has 
shown that the asthma medication theophylline is capable 
of suppressing corticosteroid resistance. This is thought 
to happen through the reactivation of HDAC2 by inhibiting 
phosphoinositide 3-kinase-δ and subsequent phosphorylation 
of HDAC2-associated kinases [34, 35].

The results of our review have similarities with different 
investigations conducted in the same regard, such as the 
review by I. Agache et al., mainly concerning the epigenetic 
mechanisms, like DNA methylation and histone modifications, 
for the mediation of environmental impacts on allergic diseases 

[4, 11, 36–39]. These two reviews proved the necessity of 
integrating genetic data with environmental factors to enhance 
diagnostics and therapeutics of allergic diseases in the future. 
The review further emphasizes that tools such as the CRISPR/
Cas9 may also contribute toward research and treatment 
approaches about this disease. A critical role in the shaping of 
epigenetic landscapes was continuously brought out throughout 
our findings as well as other studies, like S. Mijač et al. and 
A. Cardenas et al. [38, 39]. These other studies supported the 
findings that environmental exposures during prenatally as 
well as postnatally modify pollutants, maternal microbiota, 
diet, and contribute to immune regulation through epigenetic 
modifications involving FOXP3 methylation and, therefore, 
influence Treg functions.

The mechanistic insights into immune modulation through 
DNA methylation of specific loci, such as FOXP3 and IL-4Rα, 
were reflected in M. Kabesch et al. where large-scale 
epigenome-wide association studies (EWAS) emphasized that 
there was an interaction between epigenetic signatures and 
environmental factors on asthma and allergy phenotypes [11]. In 
the same way, findings and M. Kabesch et al. also put emphasis 
on the importance of pharmacogenetics in understanding and 
improving treatments of asthma and allergy [11]. Studies such 
as S. Barni et al. and B.S.D. Fiuza et al. paralleled our focus 
on immune regulation via epigenetic mechanisms, particularly 
in IgE-mediated conditions [36, 37]. For example, both have 
discussed how diet interventions and microbiota diversity 
impact epigenetic programming and tolerance to the immune 
system, which coincides with the demethylation of TSDR in 
FOXP3 during CMA and oral immunotherapy against peanut.

While our review focused on specific loci, such as FOXP3 
and HLA-DQB1, A. Cardenas et al. highlighted broader 
epigenetic patterns through EWAS and proposed integration of 
genetic influences (meQTL) with DNA methylation studies [39]. 
This suggests a more generalized approach compared to the 
locus-specific investigations emphasized in our findings. The 
protective roles of early microbial exposure were further 
expanded on by S. Mijač et al. and maternal infection, 
propounding certain dietary supplements such as vitamin D 
and polyunsaturated fatty acids for the prevention of this 
condition [38]. The review showed the role of microbiota but 
less elaborate than that of S. Mijač et al. [38].

Our review did discuss the modulation of pro-inflammatory 
and anti-inflammatory gene expressions via DNA methylation 
and histone acetylation but neither focused much on 
compartment-specific epigenetic responses as highlighted 
in A. Cardenas et al., nor did it at all expand on the impacts 
of helminths and other parasitic exposures discussed in 
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B.S.D. Fiuza et al. [37, 39]. S. Barni et al. reported a much more 
clinically and diagnostically orientated paper on IgE-mediated 
food allergies and the present strategies to manage them [36]. 
It is definitely in contrast to our review, which discusses an 
understanding of the molecular epigenetic pathways for their 
potential as biomarkers or therapeutic targets.

Limitations
This heterogeneity in study design, population, and 

methodology confined the outcomes of this review, rendering 
them not comparable across studies directly. Further 
limitation was variability in the environmental exposures that 
were being measured and also in the standardized analysis 
techniques that epigenetics analyses required. Moreover, no 
longitudinal follow-up in some of the studies complicated it 
to infer a causal relationship between epigenetic modifications 
and allergic disease progression. Further limiting the scope 
of the analysis were the few studies that looked at particular 
subtypes of allergy, such as food allergies.

Clinical recommendations and future directions
Future studies should be oriented toward standardizing 

methodologies for epigenetic analysis, such as consistent use 
of high-throughput sequencing techniques and well-defined 
outcome measures. Longitudinal studies are necessary 
to elucidate causal relationships between environmental 

exposures, epigenetic modifications, and allergic disease 
development. Greater focus on the underrepresented allergy 
subtypes, such as food allergies, should be placed with 
regard to therapeutic targeting of epigenetic modifications in 
these conditions. Integrated approaches combining molecular, 
clinical, and environmental data should be prioritized for the 
development of precision medicine frameworks. There is also 
a need for public health strategies focusing on modifiable 
environmental exposures, such as pollution and dietary factors, 
to dampen their adverse effects on epigenetic regulation and 
allergic disease prevalence.

Conclusion
Together, the included studies have highlighted the epigenetic 

changes as significant mediators of allergic diseases, altering 
immune pathways, disease severity, and therapeutic outcomes. 
DNA methylation at these important loci, such as FOXP3, 
HLA-DQB1, and IL-4Rα, served as a central hub of research to 
understand allergic inflammation and immune dysregulation. 
These results suggest functional exploitation of epigenetic 
mechanisms toward the development of novel precision therapies 
in allergic diseases. Still, on the other hand, despite all these 
advances there is still a need to standardize methodologies and 
to identify biomarkers that can be applied universally to bridge 
the gap between research and the potential clinical application.
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