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BPOHXMaﬂbHaH dCTMa C TOYKHU 3peHUua TMUKOMUKH Updates
N.0. WunyHos, B.W. Kynaes, A.B. }ecTkos

CaMapcKuil rocynapcTBeHHbI MeAMUMHCKUA YHuBepcuTeT, CaMapa, Poccuiickas ®epepauns

AHHOTALUNA

BpoHxuanbHas acTMa — LUMPOKO pacnpocTpaHéHHoe 3aboneBaHue, KOTOPOe C KaX/bIM rofjoM BCE AopoXKe obxoanTcs Me-
OVLMHCKOW 1 GUHAHCOBOW CMCTEMaM pas3BuTLIX CTpaH. PacTyuiee bpems BpoHxmanbHOM acTMbl 00ycnoBnmMBaeT Heobxoau-
MOCTb NoucKa Hanbonee 3 EKTUBHBIX METOAOB AMArHOCTUKU W fIeYeHUs PasfiyHbIX, B TOM YMCE U OTHOCUTENbHO PeaKuUX
(eHOTUNOB JaHHOro 3aboneBaHus.

C 3TOM TOUKM 3pEHUS TNIMKOMUKA SBNSETCA OAHUM U3 CaMbIX MHTEPECHBIX M NMEPCMEKTUBHBIX HanpaBieHUd MeguUMHBI. [laH-
Has 0Tpac/b U3y4aeT pasfnyHbIe YrEBOLHbIE COEAUHEHUS U UX PONb B Pa3BUTUM 3ab0NeBaHUIA.

B KoHTeKcTe 6pOHXManbHOM acTMbl NPeACTaBNAT UHTEPEC MEMOPaHHbIE PELIEeNTOPbl K KOHEYHBIM NPOAYKTaM FNIMKUPOBaHMS
(RAGE) 1 ux pacTBopuMble BapuaHTbl. [loMMMO 3TOr0, KIOYEBYIO POSib B MPUHLMMWANBHO HOBbLIX METOAAX Tepanuu MoryT
urpatb UMMyHOrn06yIMHONOA0BHbIE NIEKTUHBI, CBA3bIBAOLLME CHanoBYto KucnoTy (Siglec): BO3LEMCTBYS Ha HUX MOXHO A0-
BUTbCA CHUKEHWS NPOBOCMANUTENBHON aKTUBHOCTU MMMYHOKOMMETEHTHBIX KITETOK M MPOTEKLMM CTEHOK BpoHxoB. HakoHe,
MpaKTUYeCKN HensydeHHbIMU ocTarTca N- u 0-rvKaHbl, NOTEHLMANbHO CNocobHbIe UrpaThb Posib He TONBKO B AMArHOCTUKE
1 BepudMKaLMM DPOHXMANbHONW acTMbl, HO M B U3MEHEHWM annepreHHOCT OTAeNbHbIX Monekyn. N-rmuKaHbl MHTepecytoT
YUEHBIX HE TOJIbKO B AMArHOCTUMECKOM KOHTEKCTE, HO U B POSIM MOJIEKYS, BO3AEHCTBYSA Ha KOTOPbIE MOXHO CHU3UTL annep-
FEeHHOCTb, HanpUMep, ANYHOro BenKa BaKLMH.

[MWKOMMKA U FIMKONPOTEOMUKA — COBPEMEHHbIE, aKTUBHO Pa3BUBAlOLLMECS Pa3feNibl MeAULMHCKONA HayKu, KoTopble OT-
KpbIBAIOT HOBblE MePCreKTUBbLI B BeAEHUM NaLMEHTOB C 3aboneBaHNAMIU MHOTWX OpPraHoB W CUCTEM, BKIoYas 3aboneBaHus
pecnupaTopHoro TpaKTa B LeSIoM M BpPOHMXManbHOM acTMbl B YacTHOCTW. HecMoTpsA Ha B3pbIBHOW XapaKTep pa3BUTUS M-
KOHayKW, NpeLcTaB/ieHus 06 y4acTUm U3yyaeMbix €0 MONEKYN B MaToreHese 3ab0neBaHWUN AbIXaTesbHOW CUCTEMbI TOSIBKO
HauWHatoT GopMMPOBATLCS.

KnioyeBble cnoBa: rMMKOMUKa; OpOHXMaNbHas acTMa; peLenTopbl K KOHEYHbIM NpoayKTaM rukupoBaHusa (RAGE); Siglec;
N-rnmKaHbl.
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Bronchial asthma from the perspective of glycomics
lvan D. Shipunov, Vitalii |. Kupaev, Alexander V. Zhestkov
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ABSTRACT

Bronchial asthma is a widespread disease that is becoming increasingly costly to the medical and financial systems of many
countries with each passing year. The rising prevalence of bronchial asthma necessitates a search for the most efficient
diagnostic and treatment strategies for various asthma phenotypes, including some that are relatively uncommon.

From this point of view, glycomics appears to be one of the most interesting and perspective branches of medicine. This
research area studies various carbohydrate complexes and their roles in the development of various diseases.

Researchers are interested in the study of the receptors for advanced glycation end products and their soluble variants with
regard to bronchial asthma. Furthermore, sialic acid-binding immunoglobulin-type lectins (Siglecs) may play a vital role in the
principal novel strategies of the treatment. By affecting Siglecs, a decrease in the proinflammatory activity of immunocompetent
cells results, and the bronchial walls are protected. Finally, N- and 0-glycans remain almost unresearched. These molecules,
on the other hand, have the potential to play a significant role not only in the diagnosis and confirmation of asthma but also in
the allergenicity of various molecules. Scientists are interested in N-glycans, not only in the diagnostic context but also in their
role as a molecule that can reduce allergenicity, for example, egg white vaccines.

Glycomics and glycoproteomics are cutting-edge disciplines of medical science that are opening up new perspectives in the
management of patients with diseases of various organs and systems, including diseases of the respiratory tract in general and
bronchial asthma in particular. Despite the fast-paced nature of the development of glycoscience, theories about the role of the
molecules investigated in the pathophysiology of respiratory disorders are only beginning to emerge.
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INTRODUCTION

Bronchial asthma is one of the most widespread
noncommunicable diseases affecting more than 330 million
people worldwide. The average asthma prevalence is about
4.3% with significant cross-country variations, from 0.2%
in the People’s Republic of China to 21% in Australia [1].
Patients with asthma annually cost the US budget of $56
billion according to medical and economic studies. The costs
of managing such patients with asthma, as well as their
number, are steadily increasing not only in the United States
but also throughout the world [2]. The growing burden of
asthma necessitates the search for more effective methods
of screening, diagnosis, and treatment of the disease.

Glycomics and glycoproteomics are modern actively
developing branches of medical science that open new
prospects of identifying patients with diseases of various
organs and systems, including respiratory tract diseases in
general and asthma in particular [3]. Despite the explosive
nature of the glycoscience development, concepts about
the molecules involvement under glycoscience study in the
respiratory tract diseases pathogenesis are just beginning
to form.

This review reflects current ideas about the carbohydrates
effects and their interactions with biomolecules on the asthma
development as well as the potential for using molecules of
interest as diagnostic biomarkers and therapeutic targets.

RAGE AND THEIR LIGANDS ROLE
IN THE ASTHMA DEVELOPMENT

Glycation or nonenzymatic glycosylation is a reaction
between reducing carbohydrates (glucose, fructose, etc.)
and free amino groups of proteins, lipids, and nucleic acids
of a living organism, proceeding without the enzymes
participation. Glycation is a particular Maillard reaction case.

Membrane-bound receptors for advanced glycation
end products (mRAGE) are surface proteins from the
immunoglobulin superfamily capable of binding a wide range
of ligands. These receptors are expressed in various tissues,
both in the healthy population and in patients suffering from
various diseases. In the lungs, however, an initially higher
mRAGE level was found, which is localized mainly in type |
alveolocytes. Apparently, in healthy people, these receptors
perform not only homeostatic functions but also a number of
other functions that have not been reliably determined [4, 5].

The receptors for advanced glycation end products
(RAGEs) bind a wide range of ligands, including proteins
calprotectin (S100A8/A9), calgranulin C (S100A12), and
high-mobility group protein B1 (HMGB1). These molecules play
an important role in the allergic asthma pathogenesis [6-8].

Amphoterin (HMGB1) is a nuclear nonhistone protein
widely present in the tissues of the lungs, brain, liver, heart,
etc. [9]. It has been established that amphoterin is involved
in the diseases pathogenesis accompanied by chronic
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inflammation (especially respiratory system diseases) [10].
Elevated HMGB 1levels are recorded in the sputum of patients
with severe asthma. Apparently, this protein, through RAGE,
can contribute to the allergic inflammation development of
the upper respiratory tract, participating in the eosinophils
migration. In addition, the HMGB1 level directly correlates
with the tumor necrosis factor alpha (TNF-a) level and
interleukins 5 and 13 (IL-5 and IL-13) in sputum [7].

The S100 proteins are calcium-binding proteins with
low molecular weight. The calgranulin A (S100A8) and
calgranulin B (S100A9) exist as homodimers for an extremely
short time, quickly combining into the S100A8/A9 complex.
Expressed on the neutrophils and monocytes surfaces as
a calcium receptor, S100A8/A9 is involved in cytoskeleton
changes and in arachidonic acid metabolisms, taking a
significant part in the inflammatory response [11].

The S100A8/A9 complex is the main neutrophil cytosolic
protein [8]. It has antimicrobial activity and has been found
to directly correlate with the asthma severity. Thus, an
elevated S100A8/A9 complex level is associated with severe,
uncontrolled asthma course and can be used as biomarker to
predict response to therapy [8].

In addition, calgranulin C (S100A12), interacting with
RAGE, enhances mast cell degranulation and IgE-mediated
inflammatory response in the lungs. The S100A12 and
eosinophils levels expressing this protein are higher in
the sputum of patients with asthma compared to healthy
people [12].

Further studies on the RAGE interaction with the
designated ligands are needed. Potentially, these data can
open up a fundamentally new approach to asthma therapy
through the correction of the described molecules’ interaction
intensity.

The RAGE role in asthma pathogenesis remains largely
unclear. Apparently, mRAGE is one of the key mediators of
respiratory tract hypersensitivity, increased mucus secretion,
and bronchial wall remodeling in laboratory mice [13]. In
addition, in animal models of ovalbumin-induced asthma,
mRAGEs were found to be involved in ovalbumin-induced
airway inflammation, which is adopted in this study as a
human asthma model. This involvement is realized through
the Th2-immune inflammation activation, pro-inflammatory
cytokines stimulation (IL-5, IL-13, and TNF-a) synthesis of [14].

It is important to note that, in addition to membrane
RAGE, researchers have detected soluble RAGE (sRAGE)
in the blood [15-18]. A number of studies have found
that SRAGE level is inversely correlated with the amount
of eosinophils, IgE, and pro-inflammatory cytokines in
sputum in both adults and children [15, 16]. Apparently, this
receptor functions as a “trap-"binding mRAGE ligands and
thus preventing their pro-inflammatory activities [17]. The
HMGB1 expression inhibition in the lungs, which occurs with
the sRAGE participation, mainly contributes to decrease in
RAGE activities [15]. In addition, this soluble receptor helps
to reduce the IL-17secretion [17]. Regarding the IL-17 levels,
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an inverse synthesis correlation with the vitamin D level
in the blood seems to be significant, which indicates this
vitamin’s anti-inflammatory role in asthma [18]. It appears
that along with the effect on targets studied by glycoscience,
the vitamin D levels correction may be important in the
comprehensive asthma treatment.

In addition, sRAGE is inversely correlated with the
neutrophilic airway infiltration severity and disease severity
[19, 20]. Thus, local exposure to SRAGE can lead to decrease
in asthma intensity through various effector pathways,
opening up new possibilities for pathogenetic asthma therapy
[15, 16, 19, 20].

Chinese researchers have identified characteristic
haplotypes of genes encoding RAGE that increase the risk
of developing asthma and chronic obstructive pulmonary
diseases [21]. This study, however, was conducted among
the Hanzu ethnic group living in the northeastern part of
China. Therefore, further study of this issue in a larger
sample of patients is necessary. In general, the issue of gene
polymorphisms coding RAGE in the asthma development
and course is studied insufficiently.

MODERN CONCEPTS OF THE SIGLEC
ROLE IN THE BRONCHIAL ASTHMA
PATHOGENESIS AND MANAGEMENT

Siglec (sialic-acid-binding immunoglobulin-like lectins
are immunoglobulin-like lectins-binding sialic acid) is a
molecules family mainly expressed on immunocompetent
cells. Apparently, Siglec has an inhibitory effect on the
cells expressing them, reducing the oxidative stress and
inflammation intensities [22].

In the pathogenesis of asthma eosinophils, basophils,
and mast cells, the action of which is activated through
T-lymphocytes and IgE-mediated sensitization takes
a significant part [23]. Ultimately, the most important
role is played by eosinophils. The lifespan of which is
prolonged in the pro-inflammatory factors (IL-3, IL-5, and
granulocyte-macrophage colony-forming unit) presence
in their microenvironment [24, 25]. In order to reduce the
eosinophils life span in the focus, as well as the migration
intensity, IL-5 inhibitors (mepolizumab, reslizumab, and
IL-5R inhibitor benralizumab) can be used [24, 25]. In addition,
antibodies, which activate the Siglec-8 protein which interacts
with sialic acids, cause eosinophils and mast cells apoptosis,
reducing the allergic inflammation intensity [24, 25].

The result of a number of studies confirming that the
apoptosis intensity caused by Siglec-8 activation increases
in the IL-5 presence is remarkable, which, on the contrary,
usually prolongs eosinophils lifespan [26, 27]. Probably, this
dependence may determine the rationale for the combined
use of biological drugs that inhibit IL-5 and activate Siglec-8
in patients with severe eosinophilia; however, such treatment
regimens have yet to be studied in detail.
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It is important to note that the Siglec-8 expression level
does not correlate with the absolute eosinophils number and
the disease severity [28]. This fact may indicate that for the
treatment with new drugs activating Siglec-8, determining
the disease severity and the eosinophilia severity does
not matter.

The Siglec-F, a molecule similar in expression pattern
and ligands to human Siglec-8, was identified in laboratory
mice. These data make it possible to determine that
the aforementioned molecules have similar roles [29].
Genetic studies in allergic lung disease models showed
that mice deficient in ST3Gal-3 (beta-galactoside
alpha-2,3-sialyltransferase 3) protein had significantly
higher eosinophilic airway inflammation levels. This pattern
was associated with a lack of sialylated ligands to Siglec-F,
resulting to a low eosinophil apoptosis intensity [30, 31]. It is
likely that the presence of this gene’s orthologue in humans
may be the key to predicting the asthma severity.

Research in this direction is already underway. Thus, in the
gene encoding Siglec-8, two single-nucleotide polymorphism
variants, rs36498 and rs6509541 that apparently affect the
Siglec-8 expression level, plasma IgE level, and the risk of
developing asthma were found [32, 33].

The Siglec-8, among other things, is expressed on
mast cells but does not induce their apoptosis. It exerts
its inhibitory effect on these cells through inhibition of the
FceRI-dependent release of histamine and prostaglandin D2, as
well as the calcium ions flow and bronchial contraction [34, 35].

Despite the eosinophils and basophils significant role in the
asthma development, neutrophils should not be overlooked.
Noneosinophilic asthma is characterized by local neutrophilic
inflammation [8]. The complexity of managing patients with
this asthma phenotype lies in the weak response to inhaled
glucocorticosteroids with the pronounced systemic effects
development from their use, in particular, an increase in the
neutrophils number in the peripheral blood [36]. Diagnosis
and treatment of noneosinophilic asthma constitute a
substantial problem that is often patients are confined to take
high inhaled or systemic glucocorticoids doses, which are
long-acting beta-blockers [37, 38]. Such treatment regimens
naturally lead to the development of serious side effects.

Within this framework, the use of Siglec-9 activating
drugs seems promising in this group of patients with asthma.
These molecules are expressed mainly on the neutrophils and
monocytes surface and to a lesser extent on the natural killer
cells membranes [39, 40]. The use of monoclonal antibodies
that activate Siglec-9 leads to neutrophil apoptosis [40]. This
group of drugs can potentially become the drug of choice
in patients with severe non-eosinophilic asthma where
neutrophils play a major role in inflammation.

Overall, the part of Siglec as targets for novel asthma
therapies remains to be explored. However, it is clear from
the available data that the potential of these molecules as
targets for therapeutic intervention cannot be overestimated.
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N-GLYCANS AND BRONCHIAL
ASTHMA

The N-glycans are complex carbohydrates covalently
attached to the protein by N-glycosidic bonds through
asparagine residues. In mammals, the N-glycans biosynthesis
is the most complicated, but it has been studied to a sufficient
extent [41].

It has been determined that N-glycans expressed on
the cell surface take part in the neutrophils and eosinophils
migration to the allergic inflammation focus [42]. In addition,
the epithelial glycoprotein MUCAB expression with a high
N-glycosylation (sialylation) level is increased in patients
with Th2-associated asthma [43]. At the same time, IgG
N-glycans galactosylation plays a key role in the complexes
inhibition formed by these immunoglobulins, which has
anti-inflammatory effect in many pathological conditions and
diseases, including allergic asthma [44].

Not only human N-glycans are of great interest. Many
exoallergens have carbohydrate epitopes that provoke an
immune response in humans [45-49]. For example, terminal
carbohydrates removal from the N-acetylglucosamine
structure of ovalbumin was found to reduce IgE
hypersensitivity and Th2 immune response in sensitized mice
[45, 46]. More than 150 different compositions of N-glycans
were discovered in the venom and tissues of honey bee
(Apis mellifera) larvae [49].

It is known that allergic asthma is the most common
asthma phenotype, frequently associated with the exoallergens
presence [50]. In this regard, the abovementioned studies of
the allergen effects on N-glycome are of particular interest.

Thus, despite the increasing attention to N-glycome
changes in patients with respiratory diseases, there is
very little data on the role of such changes in the asthma
pathogenesis.

Besides N-glycans, mammalian organisms contain
0-glycans, which are extracellular proteins with attached
serine or threonine residues [51]. The 0-glycans definition
and characterization are made complex by the lack of
multipurpose enzymes for spectrometric and fluorescent
analysis, as well as heterogeneity of these molecules group
and a common glycan core absence [52]. Therefore, there is
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practically no data on the 0-glycans role in the respiratory
system diseases pathogenesis at the moment.

CONCLUSION

Glycomics is a relatively new and rapidly developing branch
of medical science. Modern data indicate that molecules in
the glycoscience area of interest play a crucial part in the
diseases pathogenesis of many organs and systems. In this
regard, it seems promising to use the glycomics achievements
for asthma diagnosis, risk verification, and treatment.

For example, mRAGE, when activated, potentiates
allergic airway inflammation by increasing the granulocytes
activity and by the pro-inflammatory cytokines synthesis.
On the contrary, soluble RAGE has anti-inflammatory effect,
apparently by trapping RAGE ligands and preventing their
association with mRAGE.

Siglec and mainly Siglec-8 and Siglec-9 are of particular
interest in the context of asthma treatment since, when
activated, they induce immunocompetent cells apoptosis and
also have some protective effects on respiratory tract tissues.

Finally, N-glycans are of interest to scientists not only in
relationship to diagnostics but also as molecules that, being
manipulated, can reduce the allergenicity of, for instance, egg
protein of vaccines.

Thus, the glycomics achievements can potentially have a
significant impact on the allergic diseases course in general
and asthma in particular.
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